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ABSTRACT 
  

This thesis supports ongoing ONR research in the area of Autonomous 

Underwater Vehicles (AUVs) and Mine Warfare.  It shows a simulation of a two-vehicle 

autonomous rendezvous using both along track and cross track position controllers.  

Conducting open water experiments with the ARIES AUV identified the added mass 

matrix and hydrodynamic coefficients of the longitudinal equation of motion.  The results 

indicate that it will be possible to maneuver an AUV to a specific rendezvous point at a 

specified time.  Two-vehicle rendezvous maneuvers are likely to be needed in multi-

vehicle operations when data transfer between range-limited communications modems 

are used. 
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I. INTRODUCTION  
 

A. BACKGROUND  

Research in the field of autonomous underwater vehicles (AUVs) at the Naval 

Postgraduate School (NPS) has progressed steadily since the inception of the Center for 

AUV Research in 1987.  The operational capabilities and sophistication of software and 

hardware has greatly increased with each new generation of vehicle.  From humble 

beginnings in swimming pools to open ocean operation, these vehicles have been at the 

forefront of AUV research. 

The unique ability of AUVs to operate in very shallow water (VSW), where 

depths range from ten to thirty feet, enables the Mine Warfare (MIW) Commander to 

search, detect, and classify mines effortlessly and safely when compared to current 

practice Navy Special Operations or Special Warfare Teams.  In an effort to expand the 

search area and provide the MIW Commander with near real-time information, the use of 

multiple vehicles having the ability to communicate between each other is the logical 

solution.  The Acoustic Radio Interactive Exploratory Server (ARIES) AUV is designed 

to operate as a communications server vehicle.  It is outfitted with the Florida Atlantic 

University  (FAU) acoustic modem and has the capability to act as a command and 

control vehicle for numerous vehicles while operating in the search area.  Equipped with 

a radio modem, when surfaced, ARIES has the ability to send and receive data to the 

MIW Commander embarked offshore. 

Current modem technology has limitations, requiring increases in both data rate 

and range.  This will also require an increase in power and size of the modem.  By using 

a mobile server, such as ARIES, close proximity, high-speed data transfers will achieve 

the same results as a long-range modem.  Current employment of the ARIES is shown in 

Figure 1.  Command and control of ARIES is accomplished using a Boston Whaler as a 

relay station.  Radio ranges of four to six nautical miles with data transfer rates of 30,000 

bits/sec are routine.   
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Figure 1.  Current Employment of ARIES (From: Healey, 2001) 

 

Possible employment of ARIES is shown in Figure 2.  Here ARIES will 

rendezvous with other vehicles, such as the Remote Environmental Measuring Units 

(REMUS), conduct file transfer operations and then relay the information to the 

command and control base.   
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Figure 2.  Possible Employment of ARIES (From: Healey, 2001) 

 

In order to accomplish the rendezvous, ARIES must have the capability to arrive 

at a certain location at a certain time.  This is known as trajectory planning. 

B. SCOPE OF THIS WORK 

Trajectory planning has not been researched in the case of AUVs and has only 

been touched on in the robotics community.  Kant and Zucker (1986) illustrated the 

everyday version of the trajectory-planning problem as simply being, “How does one get 

from here to there”?  This is a problem that humans solve so often and intuitively that the 

underlying complexity is given little or no thought. 

The focus of this thesis is two-fold: 

1.  To develop a new behavior for ARIES  - that of arriving at a defined place in 

space and time; and 

2.  To extend cross-track error guidance algorithms (Marco, 2000) to close along 

track as well as cross track errors resulting in a trajectory controller. 
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Chapter II will focus on the equations of motion for an AUV and the associated 

steering control laws.  Chapter III will discuss trajectory planning theory and 

implementation.  Chapter IV will discuss the theory and design of a sophisticated speed 

controller to complement the trajectory controller discussed in the previous chapter.  

Chapter V will present simulation results from the implementation of the complete 

trajectory/speed controller combination and Chapter VI will offer conclusions and 

recommendations for future study.  
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II. EQUATIONS OF MOTION AND AUV MODELING 
 

A. GENERALIZED STEERING EQUATIONS OF MOTION 

This section describes the equations of motion that are the basis for the model 

used to construct ARIES steering controllers. 

 Using a Newton-Euler approach, Healey, (1995) derives the equations of six 

degree of freedom motion as: 

SURGE EQUATION OF MOTION 

m[ ( ) ( ) ( )qprzrpqyrqxqwrvu GGGrrr &&& ++−++−+− 22 ] ( ) fXBW =θ−+ sin          (1) 

SWAY EQUATION OF MOTION 

m[ ( ) ( ) ( )pqrzrpyrpqxpwruv GGGrrr &&& −++−++−+ 22 ] ( ) fYBW =φθ−− sincos          (2) 

HEAVE EQUATION OF MOTION 

m[ ( ) ( ) ( )22 qpzpqryqprxpvquw GGGrrr +−++−++− &&& ] ( ) fZBW =φθ−+ coscos          (3) 

ROLL EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwymrpqIrqIqprIqrIIpI rrGxzyzxyyzx +−++−−−−+−+ &&&& 22          (4) 

( )] ( ) ( ) fBGBGrrrG KBzWzByWypwruvz =φθ−+φθ−−−+− sincoscoscos&  

PITCH EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pvquwxmrpIrpqIpqrIprIIqI rrGxzyzxyzzy +−−−+−++−−+ &&&& 22           (5) 

( )] ( ) ( ) fBGBGrrrG MBzWzBxWxqwrvuz =θ−+φθ−++−− sincoscos&  

YAW EQUATION OF MOTION 

( ) ( ) ( ) ( ) ( )[ pwruvxmpqrIqprIqpIpqIIrI rrrGxzyzxyxyz −++−++−−−−+ &&&& 22          (6) 

( )] ( ) ( ) fBGBGrrrG NByWyBxWxqwrvuy =θ−−φθ−−+−− sinsincos&  

Where:   

ur, vr, wr = component velocities for a body fixed system with respect to the water 
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p, q, r = component angular velocities for a body fixed system 
W = weight 
B = buoyancy 
I = mass moment of inertia terms 
xB, yB, zB = position difference between geometric center of ARIES and center of 

buoyancy 
xG, yG, zG = position difference between geometric center of ARIES and center of 

gravity 
Xf, Yf, Zf, KF, Mf, Nf = sums of all external forces acting on ARIES in the particular 

body fixed direction 

Healey (1995) further simplifies Equations 1 thru 6 by assuming that the center of 

mass of the vehicle lies below the origin (zG is positive) while xG and yG are zero, and 

that the vehicle is symmetric in its inertial properties.  It is also assumed that motions in 

the vertical are negligible (i.e. [wr, p, q, r, Z, φ, θ] = 0) and that ur equals the forward 

speed, Uo.  The simplified equations of motion are thus: 

or Uu =                                                                              (7) 

( )tYrmUvm for ∆+−=&                                                            (8) 

( )tNrI fzz ∆=&                                                                         (9) 

r=ψ&                                                                               (10) 

cxro UvUX +ψ−ψ= sincos&                                                (11) 

cyro UvUY +ψ−ψ= cossin&                                                (12) 

Johnson (2001) defines ( )t∆Yf  and ( )t∆Nf  as forces that are functions of the 

vehicles dynamic parameters.  Through the assumption of ‘small’ motions 

‘hydrodynamic coefficients’ can be defined related to the individual motion components.  

The expression for the transverse force is: 

rYrYvYvYY rrrvrvf rr
+++= && &&                                                      (13) 

and for the expression for the rotational force is: 

rNrNvNvNN rrrvrvf rr
+++= && &&                                        (15) 

This leads to: 
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Where: 

rvY& = added mass in sway coefficient 

rY&  = added mass in yaw coefficient 

rvY = coefficient of sway force induced by side slip 

rY  = coefficient of sway force induced by yaw 

rvN & = added mass moment of inertia in sway coefficient 

rN &  = added mass moment of inertia in yaw coefficient 

rvN = coefficient of sway moment from side slip 

rN  = coefficient of sway moment from yaw 

In addition, the action of the rudder will produce forces that when linearized are: ( )tδY rδ  

and ( )tδN rδ .  The dynamics of the vehicle are thus defined as: 

( )tYrYrYvYvYrmUvm rrrrvrvor rr
δ+++++−= δ&&& &&&                                       (16) 

( )tNrNrNvNvNrI rrrrvrvzz rr
δ++++= δ&&& &&                                            (17) 

r=ψ&        (18) 

The kinematics of the vehicle is described by Equations (11) and (12) where Ucx and Ucy 

are the current velocities in the associated direction.  The steering dynamics of ARIES in 

matrix form, M  x& = Ax + Bu, is: 
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As Johnson (2001) points out, ( )trδ  is a generalized command that represents the 

control input to both rudders.  The rudders act together, but turn in opposite directions 

allowing for rapid turning during operation.  
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 The final assumption made for ARIES  (Johnson, 2001) is that the cross coupling 

terms in the mass matrix are zero.  This is based on the vehicle’s symmetry and the 

rudders being very close to being equidistant from the body center.  Thus, in matrix form, 

the final vehicle dynamics are defined as: 
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Johnson (2001) determined the hydrodynamic coefficients for ARIES to be as 

follows: 

rvYm &− = 456.76 

rY&   = 69.90 

rvY  = -68.16 

rY   =  406.30 

rN &  = -35.47 

rvN = -10.89 

rN  = -88.34 

B.   ARIES CONTROL LAWS FOR STEERING AND CROSS TRACK 
ERROR 

This section describes the control laws used by ARIES for steering and cross 

track error. 

ARIES has four different autopilots for flight maneuvering control: diving, 

steering, altitude above bottom, and cross track error.  With the object of accomplishing 

trajectory planning, only the steering and cross track error controllers are of interest.  The 

controllers are based on sliding mode control theory presented by Healey and Lienard 

(1993). 

Marco and Healey (2001) argue that a second order model is sufficient for 

heading control.  The sideslip effects are treated as disturbances that the control 

overcomes, so the heading model becomes: 

)()()()( esdisturbanctbtartr r +δ+=&    (21) 

)()( trt =ψ&        (22) 
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From past in-water experiments, a = -0.30 sec-1 and b = -0.1125 sec-2.  δr(t) is the stern 

rudder angle.  The sliding surface and stern rudder command for heading control is thus 

defined by Healey and Marco (2001) as: 

))((.)(.)( ttrt com ψ−ψ+−=σ 1701094990    (23) 

)))(tanh()(.(.)( φση+−=δ ttrtr 539425431    (24) 

Where η = 1.0, φ = 0.5 and ψcom-ψ(t) is the heading error. 

In order for ARIES to follow a straight-line path, Marco and Healey (2001) use a 

combination of line of sight guidance proposed by Healey and Lienard (1993) and a cross 

track error (CTE) control.  The reasoning behind this is that with large heading errors, the 

cross track error control cannot be guaranteed stable, while a line of sight heading control 

will reduce heading errors to zero.  Alternating between the two controllers will minimize 

both cross track and heading errors.  Figure 3 shows the track geometry and velocity 

vector diagrams to support the argument. 

 
Figure 3.  Track Geometry and Velocity Vector (From: Marco and Healey, 2001) 

 

The perpendicular distance between the center of the vehicle (X(t),Y(t)) and the 

adjacent track line is the cross track error, ε(t).  The goal of the CTE control is to 
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minimize ε(t).  The total track length is defined as the distance between the ith and i-1 

waypoints and is given by: 

2
1

2
1 )()( )()()()( −− −+−= iwptiwptiwptiwpti YYXXL   (25) 

The ordered pairs (Xwpt(i), Ywpt(i)) and (Xwpt(i-1), Ywpt(i-1)) are the current  and previous way 

points.  The track angle is defined as: 

),(arctan )()()()()( 112 −− −−=ψ iwptiwptiwptiwptitrk XXYY   (26) 

Where arctan2 is defined by MATLAB as the inverse tangent function.  The cross track 

heading error for the ith segment is defined as: 

)()( )()(~
itrkiCTE tt ψ−ψ=ψ      (27) 

where )()(~
iCTEtψ  must be normalized to lie between ± 180 degrees.  The difference 

between the current vehicle position and the next way point is: 

)()(~
)()( tXXtX iwptiwpt −=      (28) 

)()(~
)()( tYYtY iwptiwpt −=      (29) 

With the above definitions, the distance to the ith way point projected to the track line 

can be defined as: 

iiwptiwptiwptiwptiwptiwpti LYYXXYXtS /)]()([]~~[)( )()()()()()( 11 −− −−•=  (30) 

therefore, S(t)i ranges between 0-100 percent of Li.  The cross track error may now be 

defined as: 

))(sin()()( tdtSt pi=ε      (31) 

where dp(t) is the angle (normalized to lie between ±180 degrees) between the line of 

sight to the next way point and the current track line given by: 

))(~,)(~(arctan),(arctan)( )()()()()()( iwptiwptiwptiwptiwptiwptp tXtYXXYYtd 22 11 −−−= −−    (32) 
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 Marco and Healey (2001) continue by defining the sliding surface in terms of 

derivatives of the cross track error such that the sliding surface for the CTE controller 

becomes a second order polynomial of the form: 

)())(~sin())(~cos()()( )()( ttUttUrt iCTEiCTE ελ+ψλ+ψ=σ 21   (33) 

The rudder input is thus expressed as: 

))(~sin())(())(~cos()(())(~cos(()( )()()( iCTEiCTEiCTEr ttrUttUartUbt ψ+ψ−ψ=δ − 21  (34) 

))(())(~sin())(~cos()( )()( φση−ψλ−ψλ− ttUttUr iCTEiCTE 21       

where 
2

0 π<ψ< )()(~
iCTEt , λ1 = 0.6, λ2 = 0.1, η = 0.1 and φ = 0.5.  If 

2
π>ψ )()(~

iCTEt , 

ARIES will follow the track, but travel in the opposite direction to that desired.  In order 

to prevent this from happening in practice, a bound of 40 degrees is used as a switch to 

line of sight (LOS) control. 

 Marco and Healey (2001) determined that when the magnitude of the cross track 

heading error exceeded 40 degrees, a LOS controller is used and the heading command 

and LOS error could be determined from: 

))(~,)(~(arctan)( )()()( iwptiwptLOScom tXtYt 2=ψ    (35) 

)()()(~
)( ttt LOScomLOS ψ−ψ=ψ      (36) 

The control laws for the heading controller, Equations 23 and 24, are used for heading 

control.  The need for the LOS controller is apparent in two cases: 1) when the mission 

starts and ARIES’ initial heading is greater than 40 degrees from the initial way point and 

2) when the angle between two sequential track lines exceed 40 degrees.  Once the cross 

track heading error reduces to less than 40 degrees, ARIES utilizes the CTE controller. 

C. SIMULATION RESULTS 

Appendix A contains the MATLAB .m file written by Marco (2001) that 

demonstrates Marco and Healey’s heading and cross track error controllers for the NPS 

ARIES.  Table 1 shows the track.out file used to plan the simulated ARIES mission.  It 
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consists of 5 tracks (rows).  The columns are defined below the table.  Figure 4 shows the 

results of the simulation. 

Table 1.  track.out file (From: Marco and Healey, 2001) 
   

1 2 3 4 5 6 7 8 9 10 11 

10.0 10.0 2.75 2.75 0 1.25 1 0 25.00 8.00 40.00 

10.0 210.0 2.75 2.75 0 1.25 1 0 25.00 8.00 200.00 

40.0 210.0 2.75 2.75 0 1.25 1 0 25.00 2.00 30.00 

40.0 10.0 2.75 2.75 0 1.25 1 0 25.00 2.00 200.00 

-20.0 -60.0 2.75 2.75 0 1.25 1 0 25.00 2.00 100.00 

 
Column # Description 
1   X position way point (meters) 
2   Y position way point (meters) 
3   Left screw command speed (volts) 
4   Right screw command speed (volts) 
5   Control mode flag, 0 = Depth Control, 1 = Altitude Control 
6   Commanded Altitude (feet, if applicable) 
7   Commanded Depth (feet, if applicable) 
8   Perform GPS popup on this track? 1 = Yes, 0 = No 
9   Duration of GPS popup (seconds) 
10   Watch Radius, Rw(i) (meters) 
11   Way point timeout. (seconds) 
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Figure 4.  Simulation Results of Heading and CTE Controllers 

 

It can be seen from Figure 4, that as ARIES starts the mission at (X = -80, Y = 10) 

with an initial heading of 50 degrees, LOS control is utilized until the cross track heading 

error falls below 40 degrees and CTE control takes over.  LOS control is evident at each 

turn. 
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III.  TRAJECTORY PLANNING  
 

A. INTRODUCTION AND BACKGROUND 

As previously stated in Chapter I, trajectory tracking is defined as getting from 

point A to point B at a certain time.  Fraichard (1993) eloquently described trajectory 

planning of a robot as the time history of a continuous sequence of configurations 

between the current configuration of the robot and its goal configuration.  He argued that 

trajectory planning with its time dimension allows accounting of time-dependent 

constraints such as moving obstacles and the dynamic constraints of the robot.  Dynamic 

constraints of robots are usually taken to be: engine force, sliding (friction between the 

wheels and ground), and velocity. 

With the object of defining a new behavior for the NPS ARIES, that of arriving at 

a defined place in space and time, this chapter will seek to accomplish the object by first 

getting ARIES to arrive at a defined place in space and then second, getting ARIES to 

arrive at a defined time. 

B. ARRIVAL AT A DEFINED PLACE IN SPACE 

In practice, ARIES will be used to develop a communications server vehicle.  

While running a pre-programmed mission, she will be expected to receive modem 

commands from other vehicles that will direct her to a designated rendezvous location 

and time for file transfer operations.  The first step in accomplishing this rendezvous 

requires ARIES to respond to a short-low bit rate modem command and then go to the 

rendezvous location regardless of time.  This was accomplished by modifying the 

MATLAB .m file written by Marco (2001). 

By writing a break into the .m file, thirty seconds into the simulation, a simulated 

modem command can be transmitted to ARIES designating a rendezvous position in the 

form of a one-row track.out file (Table 1).  The new track.out file essentially overwrites 

the original track.out file and the simulation proceeds using the cross track error (CTE) 

and line of sight (LOS) controllers explained in Chapter II.  Figure 5 shows the results of 

sending the vehicle to rendezvous location of  (X = -20, Y = 100) thirty seconds into the 
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mission of Figure 4.  The modifications to the original Marco (2001) MATLAB .m file 

can be seen in Appendix B. 
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Figure 5: Simulation of a Modem Command Directing ARIES to a Rendezvous Point 

 

C. ARRIVAL AT A DEFINED PLACE IN TIME WITHOUT 

ACCELERATION 

Having previously defined S(t)i as the distance to the ith way point projected to 

the track line, S(t)i can be re-characterized as the vehicle path and s can simply be defined 

as the distance traveled along the path.  Velocity can now be defined as s& .  Using theory 

developed by Fraichard (1993), the state-time space of ARIES is thus a three-dimensional 

space (s x s&  x&  t), where t represents the time dimension.  The dynamic constraints of 

ARIES are transformed into constraints on the velocity, s& , and the acceleration, s&& .  The 

constraints on s&  translate into a velocity limit curve in the (s x s& ) plane. 

With only a top speed of 3.5 knots, ARIES is not capable of the large speed changes seen 

in robots.  In order to use velocity to the advantage in this trajectory planning problem, it 
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is proposed that the velocity limit curve be defined as a step function, i.e., velocity is one 

of two states: maximum (3.5 knots) or minimum (0.5 knots).  Making the assumption that 

the acceleration is zero further simplifies the problem.  The basic uniform motion 

equations: s(t) = so + vt and v(t) = v thus hold true.   

The first item that must change in order to solve the rendezvous problem is in 

regards to the eleven-column track.out file as shown in Table 1.  In its current 

configuration, a rendezvous time is not mentioned.  In order to work around this, at the 

break in the .m file that allows the operator to send a simulated modem command, a one 

line, twelve-column track.out file is sent instead of the old eleven-column file.  The new 

twelfth column indicates the time to rendezvous in seconds after the modem command. 

Now that ARIES has a rendezvous location and time, the mission feasibility must 

be determined.  The mission feasibility is solely based on the velocity constraints of 

ARIES (since acceleration is assumed to be zero).  If the time allotted for the rendezvous 

is greater than the distance to the rendezvous point divided by the maximum speed (3.5 

knots) or if the time allotted for the rendezvous is less than the distance to the rendezvous 

point divided by the minimum speed (0.5 knots), the mission is deemed feasible and not 

constrained by the velocity.  The distance to the rendezvous point (Li) is defined by 

equation 25. 

Once the mission has been deemed feasible, the simulation proceeds using the 

pre-existing CTE and LOS controllers to determine the vehicle’s relative position with 

regard to the rendezvous point.  A simple, speed controller is then implemented to control 

ARIES’ speed with respect to time.  This is accomplished by determining the overall 

distance traveled (ODTi) in a given time step as defined by: 

iii sLODT −= −1      (37) 

where si is the distance traveled along the path.  The time used is simply the distance 

traveled divided by ARIES’ speed, and the time remaining until rendezvous is the given 

time (column twelve of the track.out file) minus the time used. 

 If the time remaining until the rendezvous is less than the distance traveled along 

the path (s) divided by the speed (U), then the vehicle is sped up to the maximum speed 
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of 3.5 knots.  If the time remaining is greater than or equal to 
U
s , then ARIES is slowed 

to 0.5 knots.  Figure 6 is a three-dimensional, time-space plot that shows the results of 

sending ARIES to the rendezvous location (X = -20, Y = 100, t = 90) thirty seconds into 

the original mission depicted in Figure 4.  Having assumed no acceleration, Figure 7 

shows the step function behavior of ARIES’ speed. 
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Figure 6: Three Dimensional Time-Space Plot 
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Figure 7: Time-Speed Plot Showing Step Behavior, No Acceleration/Deceleration 

 

 This simple speed controller, that assumes uniform motion, solves the problem of 

having ARIES arrive at a defined time.  The assumption of no acceleration, however, is 

flawed and is now addressed.  For that reason, the code utilized to produce Figures 6 and 

7 is not included in this work. 

D. ARRIVAL AT A DEFINED PLACE IN TIME WITH ACCELERATION 

Using data files from three separate missions conducted in the Azores in August 

2001, the longitudinal ground speed was plotted against the time in order to determine 

ARIES’ acceleration and deceleration.  Figure 8 shows the data from mission file 

Navd_081102_02.d.   
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Figure 8: Longitudinal Ground Speed vs Time Units for Azores Mission 081101_02 

 

For this mission, it was estimated that ARIES went from 0 m/s to 1.2 m/s in 

approximately 856 time units where each time unit is 0.125 seconds.  This is an 

acceleration rate of approximately 0.0112 m/s2.  The other two mission files 

(Navd_081101_04.d and Navd_081001_03.d) showed approximate accelerations of 

0.0152 m/s2 and 0.0044 m/s2 respectively.  These results led to an estimate of ±0.01 m/s2 

as ARIES’ acceleration/deceleration constant for the sole purpose of adding acceleration 

into the previously designed speed controller.  These calculations do not take into 

consideration that ARIES starts on the surface and comes to its ordered depth. 

Now that acceleration is being used, acceleration can be treated as a dynamic 

constraint.  The mission cannot be feasible if the distance to the rendezvous minus the 

acceleration/deceleration distance is less than the min/max speed multiplied by the time it 

takes to accelerate/decelerate from initial speed (U) to final speed (Uo).  The 

acceleration/deceleration distance is given by: 
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a
UU

d o

2

22 −
=       (38) 

where a is the acceleration constant. 

 Once the mission is determined to be feasible, if ARIES needs to increase her 

speed based on the distance remaining to the rendezvous point and time remaining until 

the rendezvous time, speed is adjusted as: 

iusediii taUU ,+= −1      (39) 

where Ui is the new speed, Ui-1 is the previous speed, ai is the acceleration constant and 

tused,i is the time used between (i-1) and i.  The maximum Ui is held at 3.5 knots.  If 

ARIES needs to decrease her speed, the following equation is used: 

iusediii taUU ,−= −1      (40) 

The minimum speed of ARIES is held to 0.5 knots. 

 Figure 9 shows the effect of deceleration on the time-speed plot for the mission 

shown in Figure 6. 
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Figure 9: Time-Speed Plot With Deceleration 
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IV. BUILDING AN ALONG TRACK SPEED (ATS) CONTROLLER 
 

A. THEORY BEHIND THE LONGITUDINAL EQUATION OF MOTION 

The use of the basic uniform motion equations: s(t) = so + vt and v(t) = v with the 

addition of acceleration does not hold true for an underwater vehicle.  For that reason, the 

code utilized to produce Figure 9 is not included in this work.  Chapter II discussed the 

equations of motion for the ARIES vehicle.  Healey (1995) further derives the surge 

equation of motion in order to model the longitudinal dynamics of the vehicle.  He 

assumes that the hydrodynamic forces in the surge direction are not generated by lift and 

are dominated by drag and added mass effects.  He also points out that the primary thrust 

forces for ARIES comes from the propellers.  This gives rise to the equation of motion 

for longitudinal motion: 

( )
r r ru r r r r propu um X u mv r X u u X− = + +& &    (41) 

Xprop represents the net propulsive force on the vehicle from propeller action.  It consists 

of two parts: the bollard pull force and the loss of thrust caused by the subsequent 

forward motion of the vehicle.  The bollard pull force is equal to n nα  where α equals 

(KtρD4).  Kt is the thrust coefficient and is a function of the propeller speed of advance.  

The loss of thrust caused by the subsequent forward motion of the vehicle is equal to 

n uγ  where γ equals 3
o Dγ ρ .  The coefficient γo is the slope of the Kt curve at the 

particular operating condition of interest.  Assuming the lateral, sideslip velocity is 

negligible simplifies equation 41 yielding the equation of motion for longitudinal motion 

in a straight line as: 

( )
r r ru r r r ru um X u X u u n n n uα γ− = + −& &    (42) 

From Johnson (2001), the value of m for ARIES is 222.26 kg, the length (a) is 64 

inches and the diameter (b) is 7.53 inches.  Based on work by Lamb (1945), for a 

neutrally buoyant mass and equating the total volume of ARIES to a prolate ellipsoid 

model while maintaining the overall length results in an a/b ratio of 8.499.  Interpolating 



24 

Lamb’s table results in a kx value of 0.0266 which results in 
ruX &  = 6.79 kg and (m -

ruX & ) 

= 215.47 kg.  Solving for ru&  results in: 

0.004641( )
r rr r r ru uu X u u n n n uα γ= + −&    (43) 

B. PARAMETER IDENTIFICATION  

The unknown values in equation 43 are 
r ru uX , α, and γ.  In order to successfully 

identify the unknown coefficients it is common practice to accurately model the ARIES 

control and response.  By manipulating the equation of motion, we can let system 

parameters become unknowns and the variables, as measured, to be known.  Data 

gathered by ARIES from her onboard sensors is sampled at eight Hertz and is therefore 

not continuous.  This calls for the use of a discrete time model.  In this case, 

( 1) ( )( ) r r
r

u t u tu t
t

+ −=
∆

&  where ∆t equals 0.125 seconds.  This simplifies equation 43 to: 

( 1) ( ) 0.004641 ( ( ) ( ) ( ) ( ) ( ) ( ))
r rr r r r ru uu t u t t X u t u t n t n t n t u tα γ+ − = ∆ + −&  (44) 

Equation 44 can be cast into matrix form: y(t) = H(t)Θ(t) where y(t) = 

( 1) ( )r ru t u t+ −& , H(t) is the n x 3 matrix of measurements relating to the output (i.e. n(t) 

and ur(t)) and Θ(t) is the 3 x 1 matrix of coefficients (
r ru uX , α, and γ). 

As Johnson (2001) pointed out, using a least squares method to estimate the 

parameters Θ(t), which are never exactly known, results in minimizing the difference 

between the actual parameter and its estimate.  The difference is known as the equation 

error and it is defined as: 

ˆ( ) ( ( ) ( ) ( ))e t y t H t t= − Θ     (45) 

where ˆ ( )tΘ  is the estimate of Θ(t).  For this particular case, it involves using the data 

obtained from the vehicle sensors combined with the equation 44.  Johnson (2001) further 

points out that in order to minimize the error, define the scalar positive squared error 

measure, '

1
( ) ( ) ( )

n

t
J n e t e t

=

=∑  then the minimization of J is given by: 
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'

1
0 ( ) ( )ˆ

n

t

dJ H t e t
d =

= = −
Θ ∑     (46) 

and substituting y(t) = H(t)Θ(t) produces: 

'

1

ˆ0 ( )( ( ) ( ) ( ))
n

t
H t y t H t t

=

= − − Θ∑    (47) 

Rearranging this into matrix form and solving for ˆ ( )tΘ  gives: 

' 1 'ˆ [ ]H H H y−Θ =      (48) 

Using the matrix divide function in MATLAB to evaluate equation 48 will produce a 

result that is the least squares fit for ˆ ( )tΘ . 

 Gelb (1974) points out that the same result may be found using the gaussian 

random assumptions in which the solution, ˆ ( )tΘ , in equation (47) is the most likely 

solution in which its probability is maximum.  It should be noted that the regression 

matrix, '

1
[ ( ) ( )]

n

t
H t H t

=
∑ , must be positive and strong (with no singularity) otherwise its 

inverse does not exist.  This means that the system must be perpetually excited by its 

input. 

C. DEFINING THE COEFFICIENTS FOR THE LONGITUDINAL 

EQUATION OF MOTION 

In order to gather the required output data (n(t) and ur(t)) to solve equation 44 by 

the method of least squares, an experiment was planned.  ARIES was programmed with 

the track.out file listed in Table 2. 

Table 2. track.out file for 17 April 2002 Experiment 
 

1 2 3 4 5 6 7 8 9 10 11 
 800.00 300.00 3.25 3.25 0 8.0 2.0 1 25.0 10.00 40.0 
900.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 

1000.00 300.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
1100.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 
1200.00 300.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
1300.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 
1300.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 75.0 
1200.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 
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1100.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
1000.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 
900.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
800.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0 

 

The values in the columns are described as follows: 

Column # Description 
     1  X position way point (meters) 
     2  Y position way point (meters) 
     3  Left screw command speed (volts) 
     4  Right screw command speed (volts) 
     5  Control mode flag, 0 = Depth Control, 1 = Altitude Control 
     6  Commanded Altitude (feet, if applicable) 
     7  Commanded Depth (feet, if applicable) 
     8  Perform GPS popup on this track? 1 = Yes, 0 = No 
     9  Duration of GPS popup (seconds) 
   10  Watch Radius, Rw(i) (meters) 
   11  Way point timeout. (seconds) 
 

The mission described in Table 2 starts ARIES out at a speed of approximately 

1.8 m/s.  After conducting a GPS popup, the vehicle runs for approximately 100 meters at 

this speed and then the speed is reduced to approximately 1.4 m/s for the next 100 meters.  

ARIES is then accelerated to 1.8 m/s for the next 100 meters.  This pattern is continued 

until reaching the turn around point.  Upon turning around, the vehicle continues the 

speed increase/decrease pattern until the end point.  In this configuration, four sets of 

acceleration/deceleration data can be obtained. 

The experiment was successfully conducted in Monterey Bay on 17 April 2002.  

In total, three data runs were conducted.  In the third run, the right and left screw 

command voltages were slightly modified due to the first two runs showing that the 

voltages were not matched.  The track.out file used in run three is shown in Table 3.     

 
Table 3. track.out file for Run 3 

 
1 2 3 4 5 6 7 8 9 10 11 

800.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 40.0 
900.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 

1000.00 300.00 2.40 2.40 0 8.0 2.0 0 25.0 10.00 150.0 
1100.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 
1200.00 300.00 2.40 2.40 0 8.0 2.0 0 25.0 10.00 150.0 
1300.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 
1300.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 75.0 
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1200.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 
1100.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
1000.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 
900.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0 
800.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0 

 

Figure 10 shows the planned and actual tracks and Figure 11 shows the changes in 

longitudinal speed during the three runs.   
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Figure 10: Actual and Planned Tracks of 17 April 2002 Experiment 
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Figure 11: Speed Plots for 17 April 2002 Experiment 

 

With the data gathered from this experiment, the MATLAB file shown in 

Appendix C, coefficients.m, was utilized to determine the unknown coefficients, 
r ru uX , 

α, and γ.  It should be noted that during this process it was discovered that previous work 

had identified the propeller rotation rate in rotations per minute (rpm) was calculated by 

multiplying the input voltage by a factor.  The factor for the port propeller is 133.8047 

and for the starboard propeller the factor is 124.4615.  Looking at the technical 
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specifications provided by the manufactor, Tecnadyne Corporation, a factor of 266 

should be used to determine the number of rpm for the propellers.  Using the 266 factor 

for determining propeller speed based on input voltage, coefficients.m determined that 

r ru uX  = -15.681, α = 0.079, and γ = 1.247.  Plugging these values into equation 44 and 

using the propeller speed data obtained from the experiment the accuracy of the 

coefficients could be determined.  Figure 12 shows the results of the model in relation to 

the actual longitudinal speed. 
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Figure 12: Model and Actual Vehicle Speed 
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D. COEFFICIENT IDENTIFICATION FROM THE RATIONAL APPROACH 

As can be seen from Figure 12, the coefficients generated by the MATLAB file, 

coefficients.m, do not accurately model the data.  Assuming ARIES has a drag coefficient 

(CD) of 0.1, an area of 0.103 m2 and the density of seawater (ρ) is 1025 3m
kg , then 

r ru uX  

can be calculated using the formula: 

ACX Duu rr
ρ=

2
1      (49) 

The result is 
r ru uX  ≈ -5.25.  This value of 

r ru uX  translates into a force of approximately 

16.35 N (3.68 lbf) when the vehicle is traveling at 1.76 m/s.  This results in a typical KT 

value for AUV/ROV propellers of about 0.4.  This value of KT requires the value of α  = 

0.0793.  Lastly by determining that the thrust reduction factor was the determining 

coefficient in the model, γ = 0.05 was chosen.    Plugging these new values (
r ru uX  = -

5.25, α  = 0.0793, and γ = 0.05) into equation 44 and using the propeller speed data 

obtained from the experiment the accuracy of these new coefficients could be 

determined.  Figure 13 shows the results of the model in relation to the actual 

longitudinal speed. 
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Figure 13. New Model and Actual Vehicle Speed 

Although the results shown in Figure 13 look accurate for predicting the speed of 

ARIES, giving further thought to the value chosen for the drag coefficient, CD, it was 

determined that with the various fins on the body of ARIES, a CD = 0.1 was too small and 

a CD = 0.2 was more appropriate. This change results in 
r ru uX  ≈ -10.5.  This value of 

r ru uX  translates into a force of approximately 32.7 N (7.36 lbf) when the vehicle is 

traveling at 1.76 m/s.  This changes the value for KT to 0.86, which is closer to the value 

provided by Tecnadye of about 1.16.  This value of KT requires the value of α  = 0.155.  
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The  γ = 0.05 was not changed.    Plugging these new values (
r ru uX  = -10.5, α  = 0.155, 

and γ = 0.05) into equation 44 and using the propeller speed data obtained from the 

experiment the accuracy of these new coefficients could be determined.  Figure 14 shows 

the results of the model in relation to the actual longitudinal speed.    
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Figure 14: Best Model and Actual Vehicle Speed 

It can be seen from Figure 14, that this model is more accurate than the previous 

model in predicting the actual speed measured by ARIES for these three data runs.  The 

difficulty in obtaining the coefficients for the longitudinal equation of motion can best be 

explained by the very small operating range of the experiment.  The speed range was at 
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the most, approximately 0.5 m/s.  This translates into a very small region on the standard 

Thrust and Torque Coefficients versus Angle of Attack chart (Lewis, 1988).  Final 

coefficients are summarized in Table 4 shown below: 

Table 4. Summary of Coefficient Values 
 

rr uuX  -10.5 

α  0.155 

γ  0.05 

 
E. THE SPEED CONTROLLER 

With the coefficients for the longitudinal equation of motion identified, a sliding 

mode controller was developed based on the work of Healey and Lienard (1993).  

Rewriting equation 44 with the coefficients identified yields: 

))()(05.0)()(155.0)()(5.10(004641.0)( tutntntntututtu rrrr −+−∆=&   (50) 

Considering the )()(05.0 tutn r− as a disturbance, equation 50 can be rewritten as: 

))()(.)()(.(.)( tntntututtu rrr 15505100046410 +−∆=&   (51) 

Choosing )()()( tutut comr −=σ as the sliding surface, where ucom is the desired vehicle 

speed, the control law in terms of the command for n(t), propeller speed, is found from: 

)/)(tanh()( φση−=σ tt&      (52) 

This results in the control law being defined as: 

)()(.))/tanh()((.)( tutututn rrcom 7467391 +φση−= &   (53) 

The propeller-speed command thus arises from one term to accelerate the vehicle, one 

term to stabilize the motion and one term to overcome the vehicle forward drag.  If a 

nonzero acceleration is required, )(tucom&  is used, otherwise for conditions where it is 

required to ‘regulate’ speed, )(tucom& is held to zero. 



34 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



35 

V.  RESULTS 
 

A. DIFFERENT TIME COMBINATIONS AT SAME [X,Y] POSITION 

The control law, equation 53, and the longitudinal equation of motion, equation 

50, were inserted in the MATLAB file called finalrendezvous.m (Appendix D) in place 

of the pre-existing, rudimentary speed controller.  Choosing a φ = 0.1, a η = 800 and a 

rendezvous position of [-20, 100] at a time of 70 seconds produced Figures 15, 16 and 17. 
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Figure 15: X-Y Plot for [-20, 100] Rendezvous Location 
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Figure 16: 3-D Plot for 70 Second Rendezvous Time 
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Figure 17: Speed vs Time for 70 Second Rendezvous Time and Propeller Speed vs Time 

The above figures show that thirty seconds into ARIES’ mission, the REMUS 

requests a rendezvous at location [-20, 100] in 70 seconds and ARIES makes the 

rendezvous.  The speed controller commands ARIES to speed up from her initial cruising 

speed of 1.4 m/s in order to achieve the rendezvous at the designated time.  The propeller 

speed (shown in the plot to the right) adjusts as necessary. 

Keeping the same rendezvous location of [-20, 100] but changing the rendezvous 

time to 90 seconds and 120 seconds results in Figures 18 through 21. 
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Figure 18: 3-D Plot for 90 Second Rendezvous Time 
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Figure 19: Speed vs Time for 90 Second Rendezvous Time 
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Figure 20: 3-D Plot for 120 Second Rendezvous Time 
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Figure 21: Speed vs Time for 120 Second Rendezvous Time 

The above four figures show that by increasing the rendezvous time by twenty 

seconds, the speed controller responds by commanding ARIES to slow down in order to 

reach the rendezvous location at the designated time. 

B. SAME TIME COMBINATIONS AT DIFFERENT [X,Y] POSITION 

By holding the time of rendezvous constant at 120 seconds and changing the 

rendezvous position from [-20, 100] to [-100, 150] and [50, 50], Figures 22 through 27 

were produced. 
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Figure 22: X-Y Plot for [-100, 150] Rendezvous Location 
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Figure 23: 3-D Plot for [-100, 150] Rendezvous Location 
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Figure 24: Speed vs Time for [-100, 150] Rendezvous Location 
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Figure 25: X-Y Plot for [50, 50] Rendezvous Location 
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Figure 26: 3-D Plot for [50, 50] Rendezvous Location 
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Figure 27: Speed vs Time for [50, 50] Rendezvous Location 

In both cases, the speed controller reacts to the change in location and commands 

the vehicle to the proper speed in order to arrive at the designated time. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 
 

A. CONCLUSIONS 

This work has demonstrated that the ARIES AUV can be outfitted with a new 

behavior of arriving at a defined place in space and time and that the pre-existing cross-

track error guidance algorithms can be extended to close along track as well as cross 

track errors resulting in a trajectory controller.  

While only a simulation, this work can be extremely useful to the mission 

planner.  The ability to determine ARIES’ response over various distances will allow the 

MIW Commander to effectively plan the use of his assets when setting up search patterns 

for the REMUS vehicles and waiting patterns for ARIES. 

B. RECOMMENDATIONS 

The difficulty encountered in determining the hydrodynamic coefficients of the 

longitudinal equation of motion can be directly attributed to the size and number of open 

ocean missions that were conducted.  In order to fully realize these values, more runs 

would need to be conducted.  It is further recommended that each run start at ARIES’ 

minimum speed and then incrementally increase her speed in small intervals until 

reaching maximum speed.  Stepping ARIES speed back down to minimum in the same 

interval would enhance the data for her deceleration.  Overall this data would be a vast 

improvement over the data that was collected during the 17 April 2002 experiment and 

would increase confidence in the model for all speed scenarios. 

The simulation presented involved ARIES receiving a simulated command from 

REMUS to rendezvous at a particular place and time.  It was shown that ARIES is 

constrained by her velocity and acceleration and therefore will not always be able to 

conform to REMUS’ command. There is no method in place for ARIES to make this 

known to REMUS and propose an alternate location and/or time.  Additionally, the 

simulation is hard coded to ask the user to input a simulated modem command thirty 

seconds into ARIES’ mission.  In practice, ARIES should be able to receive a command 

to rendezvous at any time during her mission.  It is obvious that further study involving 

the communication between vehicles is thus warranted. 



50 

Finally, while this simulation shows that ARIES can achieve a rendezvous in 

space and time, it is only a simulation.  Transforming the code contained in 

finalrendezvous.m (Appendix D) into ARIES’ C programming language would be a 

worthy endeavor, as the Center for AUV Research stands ready to receive their fourth 

generation vehicle in the coming months.  With two vehicles in operation, the work 

presented here can someday be validated on the open ocean. 
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APPENDIX A.  MATLAB FILE WAYPOINT.M 
This appendix contains a MATLAB file written by Marco (2001) that simulates 

ARIES using heading control and cross track error control for a planned path.  
 
%File CTE_Loiter 
whitebg('k'); 
% State = [v r psi] 
clear 
 
TRUE  = 1; 
FALSE = 0; 
 
DegRad = pi/180; 
RadDeg = 180/pi; 
%State Model PArameters 
W   = 600.0; 
U = 1.4*3.28; 
g = 32.174; 
Boy = 500.0; 
xg  = 0.125/12.0; 
m = W/g; 
 
rho = 1.9903; 
L = 10; 
 
Iz = (1/12)*m*(1.33^2 + 10^2); % Approx. Using I = 1/12*m*(a^2 + b^2) 
Iz = Iz*5.0; 
Yv_dot = -0.03430*(rho/2)*L^3; 
Yr_dot = -0.00178*(rho/2)*L^4;  
Yv = -0.10700*(rho/2)*L^2; 
Yr = 0.01187*(rho/2)*L^3; 
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed 
Ydrb = (0.01241*(rho/2)*L^2)/2.0; 
Nv_dot = -0.00178*(rho/2)*L^4; 
%Nr_dot = -0.00047*(rho/2)*L^5; 
Nr_dot = -Iz; 
Nv = -0.00769*(rho/2)*L^3; 
Nr = -0.00390*(rho/2)*L^4; 
%Ndrs = -2.6496/2.0; % Since Bow & Stern Lower Rudders Removed 
%Ndrb = 1.989/2.0; 
 
% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length in Feet 
Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0; % Since Stern Lower Rudder Removed 
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0; % Since Bow Lower Rudder Removed 
 
% Combining Stern & Bow Rudder Effectivness 
Ndr = Ndrs - Ndrb; 
Ydr = Ydrs - Ydrb; % Cancel Out 
m1 = m - Yv_dot; 
m2 = m*xg - Yr_dot; 
m3 = m*xg - Nv_dot; 
m4 = Iz - Nr_dot; 
Y1 = Yv; 
Y2 = Yr; 
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Y3 = U^2*Ydr; 
N1 = Nv; 
N2 = Nr; 
N3 = U^2*Ndr; 
 
A = [Y1*U Y2*U;N1*U N2*U]; 
B = [Y3 N3]'; 
M = [m1 m2;m3 m4]; 
A1 = inv(M)*A; 
B1 = inv(M)*B; 
AO = [A1(1,1) A1(1,2) 0; 
     A1(2,1) A1(2,2) 0; 
      0 1 0]; 
BO = [B1;0]; 
 
dt = 0.125; 
t = [0:dt:1000]'; 
 
size(t) 
% set initial conditions 
start=10; 
v(1)   = 0.0; 
r(1)   = 0.0; 
rRM(1) = r(1); 
% This is the Initial Heading of the Vehicle 
psi(1) = 50.0*DegRad; 
 
% This is the Initial Position of the Vehicle 
X(1) = -80.0; % Meters 
Y(1) = 10.0; 
 
% Convert to Feet 
% this data from track.out file 
No_tracks=5; 
Track=[ 10.0 10.0   2.75 2.75  0  1.25  1.00 0 25.00 8.00 40.00 
        10.0 210.0  2.75 2.75  0  1.25  1.00 0 25.00 8.00 200.00 
        40.0 210.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 30.00 
        40.0 10.0   2.75 2.75  0  1.25  1.00 0 25.00 2.00 200.00 
       -20.0 -60.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 100.00]; 
track=Track(:,1:2); 
SurfaceTime = Track(:,9); 
SurfPhase   = Track(:,8); 
 
% readin wayopoints from track data assumes track is loaded 
for j=1:No_tracks,    
   X_Way_c(j)     = track(j,1); 
   Y_Way_c(j)     = track(j,2); 
end; 
 
%Set start position 
PrevX_Way_c(1) = -80.0; 
PrevY_Way_c(1) =  10.0; 
r_com = 0.0; 
W_R = 10.0; 
a = -.3; 
b = (9/24)*a; 
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x(:,1) = [v(1);r(1);psi(1)]; 
 
% Below are in British Units for CTE Sliding Mode 
%Lam1 = 0.75; 
%Lam2 = 0.5; 
Lam1 = 2.0; 
Lam2 = 1.0; 
Eta_FlightHeading = 1.0; 
Phi_FlightHeading = 0.5; 
 
% Below for tanh 
Eta_CTE = 0.1; 
Eta_CTE_Min = 1.0; 
Phi_CTE = 0.5; 
   Uc = []; 
   Vc = []; 
PLOT_PART = 0; 
SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)-PrevY_Way_c(1))^2); 
psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1)); 
 
for j=2:No_tracks, 
   SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-Y_Way_c(j-1))^2); 
   psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1)); 
end; 
     
  j=1; 
  Sigma = []; 
  Depth_com = []; 
  dr=[]; 
  drl = []; 
  drl(1) = 0.0; 
  Depth_com(1) = 5.0; 
  WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0]; 
 
SURFACE_TIMER_ACTIVE = FALSE; 
for i=1:length(t)-1, 
   Depth_com(i) = WayPointVertDist_com(j); 
   X_Way_Error(i) = X_Way_c(j) - X(i); 
   Y_Way_Error(i) = Y_Way_c(j) - Y(i); 
   % DeWrap psi to within +/- 2.0*pi; 
   psi_cont(i) = psi(i); 
   while(abs(psi_cont(i)) > 2.0*pi) 
      psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi; 
   end; 
   psi_errorCTE(i) = psi_cont(i) - psi_track(j); 
   % DeWrap psi_error to within +/- pi; 
   while(abs(psi_errorCTE(i)) > pi) 
      psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi; 
   end; 
 
% **  Always Calculate this  
      Beta = v(i)/U; 
%      Beta = 0.0; 
      cpsi_e = cos(psi_errorCTE(i)+Beta); 
      spsi_e = sin(psi_errorCTE(i)+Beta); 
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      s(i) = [X_Way_Error(i),Y_Way_Error(i)]*... 
             [(X_Way_c(j)-PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]'; 
      % s is distance to go projected to track line(goes from 0-100%L) 
 
      s(i) = s(i)/SegLen(j); 
      Ratio=(1.0-s(i)/SegLen(j))*100.0; 
% ** 
      % radial distance to go to next WP 
      ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2); 
      % dp is angle between line of sight and current track line 
      dp(i) = ... 
             atan2( (Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-PrevX_Way_c(j)) )... 
           - atan2( Y_Way_Error(i),X_Way_Error(i) ); 
      if(dp(i) > pi), 
         dp(i) = dp(i) - 2.0*pi; 
      end; 
      cte(i) = s(i)*sin(dp(i)); 
      if( abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0 ), 
         % Use LOS Control  
         LOS(i) = 1; 
         psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i)); 
         psi_errorLOS(i) = psi_comLOS - psi_cont(i); 
        if(abs(psi_errorLOS(i)) > pi), 
           psi_errorLOS(i) = ... 
           psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)/abs(psi_errorLOS(i)); 
        end; 
        Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*psi_errorLOS(i); 
        dr(i) = -1.5435*( 2.5394*r(i) ... 
               + Eta_FlightHeading*tanh(Sigma_FlightHeading/Phi_FlightHeading)); 
   else 
      % Use CTE Controller 
      LOS(i) = 0;          
      if(cpsi_e ~= 0.0), % Trap Div. by Zero ! 
%     SMC Soln 
      Sigma(i) = U*rRM(i)*cpsi_e + Lam1*U*spsi_e + 3.28*Lam2*cte(i); 
      dr(i) = (1.0/(U*b*cpsi_e))*(-U*a*rRM(i)*cpsi_e + U*rRM(i)^2*spsi_e ... 
            - Lam1*U*rRM(i)*cpsi_e - Lam2*U*spsi_e - Eta_CTE*(Sigma(i)/Phi_CTE)); 
      else 
       dr(i) = dr(i-1);       
      end; 
 
   end; % End of CTE Controller 
 
   % use LOS if near to loiter point 
    
     % if (loiter==1)& s(i)<10;  dr(i)=drlos(i);end; 
       
   % Surface Phase Logic (Independent of LOS or CTE) 
 
      if(SurfPhase(j) == TRUE) 
         if(SURFACE_TIMER_ACTIVE == FALSE) 
            if(Ratio > 40.0) 
               % Start a Timer 
               SURFACE_TIMER_ACTIVE = TRUE; 
               Depth_com(i) = 0.0; 
               SurfaceWait = SurfaceTime(j) + t(i); 
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               SurfaceWait 
            end; 
         end; 
      end; 
 
      if(SURFACE_TIMER_ACTIVE == TRUE) 
        if(t(i) >= SurfaceWait) 
           SURFACE_TIMER_ACTIVE = FALSE; 
           Depth_com(i) = WayPointVertDist_com(j); 
           SurfPhase(j) = 0; 
        else 
           Depth_com(i) = 0.0; 
        end; 
      end; 
 
   if(abs(dr(i)) > 0.4) 
      dr(i) = 0.4*sign(dr(i)); 
   end; 
 
 % Model drl is the actual lagged rudder, dr is the rudder command. 
 %   taudr = 0.255; 
    
 %  drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr; 
 % if(abs(drl(i)) > 0.4) 
 %      drl(i) = 0.4*sign(drl(i)); 
 %  end; 
 
 
   %Jay Johnson Model; 
   Yv  = -68.16; 
   Yr  = 406.3; 
   Ydr = 70.0; 
   Nv  = -10.89; 
   Nr  = -88.34; 
   Ndr = -35.47; 
   MY = 456.76; 
   IN = 215; 
 
   M = diag([MY,IN,1]); 
   AA = [Yv,Yr,0;Nv,Nr,0;0,1,0]; 
   BB = [Ydr;Ndr;0];   
   A  = inv(M)*AA; 
   B  = inv(M)*BB; 
   
  % x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i); 
  %                  A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i); 
  %                  r(i)]; 
  x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i); 
                   A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i); 
                   r(i)]; 
                
   x(:,i+1) = x(:,i)+dt*x_dot(:,i);            
   v(i+1)   = x(1,i+1)/12; 
   r(i+1)   = x(2,i+1); 
   psi(i+1) = x(3,i+1); 
   rRM(i+1) = r(i+1); 
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%  Added 
%   rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i)); 
%   psi(i+1) = psi(i) + dt*rRM(i); 
 
%  Throw in some Waves 
   %Uc(i) = -0.5*sin(2*pi*t(i)/5); 
   %Vc(i) =  0.5*sin(2*pi*t(i)/5); 
    
   %Model using system ID results from Bay tests 
    
   %  rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i)); 
   %  psi(i+1) = psi(i) + dt*rRM(i); 
   % side slip added proprtional to turn rate from AZORES data V in ft/sec 
   % v(i+1) = 1.0*rRM(i+1)*3.28; 
    
   Uc = 0.0;  
   Vc = 0.0; 
 
   %Kinematics 
   X(i+1) = X(i) + (Uc + (U/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i)) )*dt; 
   Y(i+1) = Y(i) + (Vc + (U/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i)) )*dt; 
 
   %  Check to See if we are Within the Watch_Radius  
    
   if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),       
   disp(sprintf('WayPoint %d Reached',j)); 
      if(j==No_tracks), 
         PLOT_PART = 1; 
         break; 
      end; 
      PrevX_Way_c(j+1) = X_Way_c(j); 
      PrevY_Way_c(j+1) = Y_Way_c(j); 
      j=j+1; 
   end; 
end; 
 
dr(i+1) = dr(i); 
cte(i+1) = cte(i);  
s(i+1) = s(i); 
ss(i+1) = ss(i); 
 
if(PLOT_PART), 
 
   figure(1); 
   plot(t([1:i+1]),psi*180/pi); 
   hold; 
   plot(t([1:i+1]),dr*180/pi,'r');grid; 
   hold;zoom on; 
   figure(2); 
   plot(t([1:i+1]),cte); 
   hold; 
   plot(t([1:i+1]),s,'r'); 
   plot(t([1:i+1]),ss,'g');grid; 
   hold;zoom on; 
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else 
   figure(1); 
   plot(t,psi*180/pi); 
   hold; 
   plot(t,dr*180/pi,'r'); 
   hold;grid; 
   figure(2); 
   plot(t,cte); 
   hold; 
   plot(t,s,'r'); 
   plot(t,ss,'g');grid; 
   hold;zoom on; 
end; 
 
   figure(3); 
   plot(Y,X);grid; 
   hold 
   plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r'); 
   for ii=2:No_tracks, 
      plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r'); 
   end; 
   hold;zoom on; 
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APPENDIX B.  MATLAB FILE RENDEZVOUS.M 
This appendix contains a MATLAB file based on the file in appendix A that 

simulates ARIES receiving a modem command thirty seconds into her planned mission 

for her to rendezvous at a specific location. 
% This file has a pre-defined track.out file in it.  30 seconds into the 
% simulation, the user is asked if ARIES should be diverted to a  
% rendezvous point.  If the answer is 'yes', the user is prompted to enter 
% a new track.out file that consists of one row (This simulates an acoustic 
% modem command).  The simulation will show ARIES aborts the planned track 
% and goes to the directed rendezvous point.  If the answer is 'no' to the 
% query concerning the rendezvous point, the mission continues as planned. 
 
% All equation numbers (i.e, Eq (#)) refer to equations presented in Marco 
% Healey’s “Command, Control and Navigation Experimental Results 
% With the NPS ARIES AUV” 
 
% 06 Feb 2002 
 
whitebg('k'); 
% State = [v r psi] 
clear 
TRUE  = 1; 
FALSE = 0; 
 
% Converts Degrees to Radians & Radians to Degrees 
 
DegRad = pi/180; 
RadDeg = 180/pi; 
 
% State Model Parameters 
 
W   = 600.0;                    % Weight in LB 
U = 1.4*3.28;                   % Forward Speed ? 
g = 32.174;                     % Gravity in ft/sec^2 
Boy = 500.0;                    % Bouyancy ? 
xg  = 0.125/12.0;               % ?? 
m = W/g;                        % Mass 
rho = 1.9903;                   % Density of Seawater in slugs/ft^3 
L = 10;                         % Length in ft of ARIES 
Iz = (1/12)*m*(1.33^2 + 10^2);  % Approx. Using I = 1/12*m*(a^2 + b^2) 
                                % where a is width & b is length 
Iz = Iz*5.0; 
 
% Coefficients 
 
Yv_dot = -0.03430*(rho/2)*L^3;  % Added Mass in Sway Coefficient. 
Yr_dot = -0.00178*(rho/2)*L^4;  % Added Mass in Yaw Coefficient. 
Yv = -0.10700*(rho/2)*L^2;      % Coeff. of Sway Force induced by Side Slip 
Yr = 0.01187*(rho/2)*L^3;       % Coeff. of Sway Force induced by Yaw 
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed 
Ydrb = (0.01241*(rho/2)*L^2)/2.0; % So don't use these equations 
 
Nv_dot = -0.00178*(rho/2)*L^4; % Added Mass Moment of Inertia in Sway Coeff 
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%Nr_dot = -0.00047*(rho/2)*L^5; 
Nr_dot = -Iz;                  % Added Mass Moment of Inertia in Yaw Coeff 
Nv = -0.00769*(rho/2)*L^3;     % Coeff. of Sway Moment from Side Slip 
Nr = -0.00390*(rho/2)*L^4;     % Coeff. of Sway Moment from Yaw 
%Ndrs = -2.6496/2.0;           % Since Bow & Stern Lower Rudders Removed 
%Ndrb = 1.989/2.0; 
 
% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length 
% in Feet - Since Bow & Stern Lower Rudders Removed 
 
Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0;    
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0;  
 
% Combining Stern & Bow Rudder Effectivness 
 
Ndr = Ndrs - Ndrb; 
Ydr = Ydrs - Ydrb;                           % Cancel Out 
 
% Matrices 
 
m1 = m - Yv_dot; 
m2 = m*xg - Yr_dot; 
m3 = m*xg - Nv_dot; 
m4 = Iz - Nr_dot; 
Y1 = Yv; 
Y2 = Yr; 
Y3 = U^2*Ydr; 
N1 = Nv; 
N2 = Nr; 
N3 = U^2*Ndr; 
A = [Y1*U Y2*U;N1*U N2*U]; 
B = [Y3 N3]'; 
M = [m1 m2;m3 m4]; 
A1 = inv(M)*A; 
B1 = inv(M)*B; 
AO = [A1(1,1) A1(1,2) 0; 
     A1(2,1) A1(2,2) 0; 
      0 1 0]; 
BO = [B1;0]; 
dt = 0.125; 
t = [0:dt:1000]'; 
size(t); 
 
% Set initial conditions 
 
start=10; 
v(1)   = 0.0;                       % Initial Side Slip Velocity 
r(1)   = 0.0;                       % Initial Yaw 
rRM(1) = r(1); 
psi(1) = 50.0*DegRad;               % Initial Heading of ARIES 
X(1) = -80.0;                       % Initial Position in Feet 
Y(1) = 10.0; 
 
% Convert to Feet ? 
 
% This data from track.out file 
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No_tracks=5;                        % Sets # of Tracks = # of Rows 
 
Track=[ 10.0 10.0   2.75 2.75  0  1.25  1.00 0 25.00 8.00 40.00 
        10.0 210.0  2.75 2.75  0  1.25  1.00 0 25.00 8.00 200.00 
        40.0 210.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 30.00 
        40.0 10.0   2.75 2.75  0  1.25  1.00 0 25.00 2.00 200.00 
       -20.0 -60.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 100.00]; 
 
track=Track(:,1:2);             % Defines track as Track(X,Y) 
SurfaceTime = Track(:,9);       % Col 9 of Track is Surface Time for Pop-up 
SurfPhase   = Track(:,8);       % Col 8 of Track designates if Pop-up 
 
% Read in wayopoints from track data assumes track is loaded 
 
for j=1:No_tracks,    
   X_Way_c(j)     = track(j,1);   
   Y_Way_c(j)     = track(j,2); 
end; 
 
% Set start position 
 
PrevX_Way_c(1) = -80.0; 
PrevY_Way_c(1) =  10.0; 
r_com = 0.0; 
W_R = 10.0;                     % Sets initial Watch Radius 
a = -.3; 
b = (9/24)*a; 
x(:,1) = [v(1);r(1);psi(1)]; 
 
% Below are in British Units for CTE Sliding Mode 
%Lam1 = 0.75; 
%Lam2 = 0.5; 
Lam1 = 2.0; 
Lam2 = 1.0; 
Eta_FlightHeading = 1.0; 
Phi_FlightHeading = 0.5; 
 
% Below for tanh 
 
Eta_CTE = 0.1; 
Eta_CTE_Min = 1.0; 
Phi_CTE = 0.5; 
Uc = []; 
Vc = []; 
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0')); 
 
% Total Track Length between initial waypoint and waypoint (1) 
 
SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)... 
    -PrevY_Way_c(1))^2); 
 
% Track Angle of first track 
 
psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1)); 
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% Computes track lengths and track angles for each track 
 
for j=2:No_tracks, 
   SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-... 
       Y_Way_c(j-1))^2); 
   psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1)); 
end; 
j=1; 
Sigma = []; 
Depth_com = []; 
dr=[]; 
drl = []; 
drl(1) = 0.0; 
Depth_com(1) = 5.0; 
WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0]; 
SURFACE_TIMER_ACTIVE = FALSE; 
 
% Starts a loop that computes values for each data point corresponding to 
% a time value (in this case, every 0.125 seconds from 1 to 1000 seconds) 
 
for i=1:length(t)-1, 
   Depth_com(i) = WayPointVertDist_com(j); 
 
% Difference between current vehicle position & the next waypoint Eq(13) 
 
   X_Way_Error(i) = X_Way_c(j) - X(i); 
   Y_Way_Error(i) = Y_Way_c(j) - Y(i); 
 
% DeWrap psi to within +/- 2.0*pi; Makes Heading Angle to lie between 
% 0-360 degrees 
 
   psi_cont(i) = psi(i); 
   while(abs(psi_cont(i)) > 2.0*pi) 
      psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi; 
   end; 
 
% Cross Track Heading Error Eq(12) 
 
   psi_errorCTE(i) = psi_cont(i) - psi_track(j); 
 
% DeWrap psi_error to within +/- pi;  Normalized to Lie between +/- 180 
% degrees 
 
   while(abs(psi_errorCTE(i)) > pi) 
      psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi; 
   end; 
 
% **  Always Calculate this (What is This?) 
   Beta = v(i)/U; 
%  Beta = 0.0; 
   cpsi_e = cos(psi_errorCTE(i)+Beta); 
   spsi_e = sin(psi_errorCTE(i)+Beta); 
 
% Distance to the ith way point projected to the track line S(t)i -   
% Eq (14) 
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   s(i) = [X_Way_Error(i),Y_Way_Error(i)]*[(X_Way_c(j)-... 
           PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]'; 
          
% s is distance to go projected to track line(goes from 0-100%L) - Eq (14) 
 
   s(i) = s(i)/SegLen(j); 
   Ratio=(1.0-s(i)/SegLen(j))*100.0;     % Ranges from 0-100% of SegLen 
 
% Radial distance to go to next WP 
 
   ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2); 
 
% dp is angle between line of sight and current track line - Eq (16) 
 
   dp(i) = atan2( (Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-... 
           PrevX_Way_c(j)) )- atan2( Y_Way_Error(i),X_Way_Error(i) ); 
   if(dp(i) > pi), 
       dp(i) = dp(i) - 2.0*pi; 
   end; 
 
% Cross Track Error Definition - Eq (15) 
 
   cte(i) = s(i)*sin(dp(i)); 
 
% If the magnitude of the CTE Heading exceeds 40 degrees, a LOS Controller 
% is used. 
 
   if( abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0 ), 
      LOS(i) = 1; 
      psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i));    % Eq (22) 
      psi_errorLOS(i) = psi_comLOS - psi_cont(i);           % Eq (23) 
                                                            % LOS Error 
      if(abs(psi_errorLOS(i)) > pi), 
         psi_errorLOS(i) = psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)... 
             /abs(psi_errorLOS(i)); 
      end; 
         
% Eq (8) 
 
      Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*psi_errorLOS(i); 
 
% Eq (9) 
 
      dr(i) = -1.5435*( 2.5394*r(i)+ Eta_FlightHeading*tanh... 
          (Sigma_FlightHeading/Phi_FlightHeading));   
 
      else 
 
% Use CTE Controller if CTE Heading is less than 40 degrees 
 
      LOS(i) = 0;          
      if(cpsi_e ~= 0.0),                % Trap Div. by Zero ! 
 
% SMC Soln 
 
% Sliding Surface - Eq (20) 
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         Sigma(i) = U*rRM(i)*cpsi_e + Lam1*U*spsi_e + 3.28*Lam2*cte(i); 
 
% Rudder Input - Eq (21) 
 
         dr(i) = (1.0/(U*b*cpsi_e))*(-U*a*rRM(i)*cpsi_e + U*rRM(i)^2*... 
             spsi_e - Lam1*U*rRM(i)*cpsi_e - Lam2*U*spsi_e - Eta_CTE* ... 
             (Sigma(i)/Phi_CTE)); 
      else 
       dr(i) = dr(i-1);       
      end; 
  end;                                 % End of CTE Controller 
 
  % Use LOS if near to loiter point 
  % if (loiter==1)& s(i)<10;  dr(i)=drlos(i);end; 
     
  % Surface Phase Logic (Independent of LOS or CTE) 
 
  if(SurfPhase(j) == TRUE) 
      if(SURFACE_TIMER_ACTIVE == FALSE) 
         if(Ratio > 40.0) 
            % Start a Timer 
            SURFACE_TIMER_ACTIVE = TRUE; 
            Depth_com(i) = 0.0; 
            SurfaceWait = SurfaceTime(j) + t(i); 
            SurfaceWait 
         end; 
      end; 
  end; 
  if(SURFACE_TIMER_ACTIVE == TRUE) 
     if(t(i) >= SurfaceWait) 
        SURFACE_TIMER_ACTIVE = FALSE; 
        Depth_com(i) = WayPointVertDist_com(j); 
        SurfPhase(j) = 0; 
        else 
            Depth_com(i) = 0.0; 
     end; 
  end; 
  if(abs(dr(i)) > 0.4) 
      dr(i) = 0.4*sign(dr(i)); 
  end; 
 
 % Model drl is the actual lagged rudder, dr is the rudder command. 
 % taudr = 0.255; 
    
 %  drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr; 
 % if(abs(drl(i)) > 0.4) 
 %    drl(i) = 0.4*sign(drl(i)); 
 % end; 
 
 % Jay Johnson Model 
  
   Yv  = -68.16; 
   Yr  = 406.3; 
   Ydr = 70.0; 
   Nv  = -10.89; 
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   Nr  = -88.34; 
   Ndr = -35.47; 
   
   MY = 456.76; 
   IN = 215; 
   
   M = diag([MY,IN,1]); 
   AA = [Yv,Yr,0;Nv,Nr,0;0,1,0]; 
   BB = [Ydr;Ndr;0];   
   A  = inv(M)*AA; 
   B  = inv(M)*BB; 
   
 % x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i); 
 %                  A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i); 
 %                  r(i)]; 
  x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i); 
                   A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i); 
                   r(i)]; 
                
   x(:,i+1) = x(:,i)+dt*x_dot(:,i);            
   v(i+1)   = x(1,i+1)/12; 
   r(i+1)   = x(2,i+1); 
   psi(i+1) = x(3,i+1); 
   rRM(i+1) = r(i+1); 
 
 % Added 
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i)); 
 % psi(i+1) = psi(i) + dt*rRM(i); 
 
 % Throw in some Waves 
 % Uc(i) = -0.5*sin(2*pi*t(i)/5); 
 % Vc(i) =  0.5*sin(2*pi*t(i)/5); 
    
 % Model using system ID results from Bay tests 
    
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i)); 
 % psi(i+1) = psi(i) + dt*rRM(i); 
 % side slip added proprtional to turn rate from AZORES data V in ft/sec 
 % v(i+1) = 1.0*rRM(i+1)*3.28; 
    
   Uc = 0.0;  
   Vc = 0.0; 
 
   % Kinematics 
    
   X(i+1) = X(i) + (Uc + (U/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i)) )*dt; 
   Y(i+1) = Y(i) + (Vc + (U/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i)) )*dt; 
    
%************************************************************************** 
 
% This should abort @ 30 seconds if input is empty or 'Y' 
% This modification done on 05 Feb 2002 - original file is waypoint1.m 
    
   if i == 240, 
      K = input('Is Rendezvous Required? (Enter 1 for Yes, 0 for No)-->>'); 
      if isempty(K)==1; K = 1; break; end; 
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      if K == 1; break; 
      else i = i; end; 
   end 
 
%************************************************************************** 
 
   % Check to See if we are Within the Watch_Radius  
    
   if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),       
   disp(sprintf('WayPoint %d Reached',j)); 
      if(j==No_tracks), 
         PLOT_PART = 1; 
         disp(sprintf('PLOT_PART = 1')); 
         break; 
      end; 
      PrevX_Way_c(j+1) = X_Way_c(j); 
      PrevY_Way_c(j+1) = Y_Way_c(j); 
      j=j+1; 
  end; 
end; 
 
%************************************************************************** 
 
% Requests Rendezvous Point Information 
% This modification done on 05 Feb 2002 - original file waypoint2.m 
 
if j == No_tracks, 
   disp(sprintf('Mission Complete'));  
else 
new_r_com = 0.0; 
new_v(1) = v(i+1); 
new_r(1) = r(i+1); 
new_rRM(1) = new_r(1); 
new_psi(1) = psi(i+1); 
New_X(1) = X(i+1); 
New_Y(1) = Y(i+1); 
New_No_Tracks = 1; 
New_Track = input('Enter 11 Column Track, i.e., [1 1 ...]-->>'); 
new_track = New_Track(:,1:2); 
new_SurfaceTime = New_Track(:,9); 
new_Surfphase = New_Track(:,8); 
for jj = 1:New_No_Tracks, 
  New_X_Way_c(jj) = new_track(jj,1); 
  New_Y_Way_c(jj) = new_track(jj,2); 
end; 
New_PrevX_Way_c(1) = X(i+1);          % Sets Abort Posit as start of new 
New_PrevY_Way_c(1) = Y(i+1);          % track. 
% Below for tanh 
new_Eta_CTE = 0.1; 
new_Eta_CTE_Min = 1.0; 
new_Phi_CTE = 0.5; 
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0')); 
new_x(:,1) = [new_v(1); new_r(1); new_psi(1)]; 
 
% Total Track Length between abort point and rendezvous point 
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New_SegLen(1) = sqrt((New_X_Way_c(1)-New_PrevX_Way_c(1))^2+... 
    (New_Y_Way_c(1) - New_PrevY_Way_c(1))^2); 
 
% Track Angle of track between abort point and rendezvous point 
 
new_psi_track(1) = atan2(New_Y_Way_c(1)-New_PrevY_Way_c(1),... 
    New_X_Way_c(1)-New_PrevX_Way_c(1)); 
 
% Starts loop that computes values for each data point corresponding to a 
% time value along new track 
 
jj=1; 
new_Sigma = []; 
new_Depth_com = []; 
new_dr=[]; 
new_drl = []; 
new_drl(1) = 0.0; 
new_Depth_com(1) = 5.0; 
new_WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0]; 
new_SURFACE_TIMER_ACTIVE = FALSE; 
tt = [t(i+1):dt:500]'; 
size(tt); 
for ii = 1:length(tt)-1, 
    new_Depth_com(ii) = new_WayPointVertDist_com(jj); 
    New_X_Way_Error(ii) = New_X_Way_c(jj) - New_X(ii); 
    New_Y_Way_Error(ii) = New_Y_Way_c(jj) - New_Y(ii); 
    new_psi_cont(ii) = new_psi(ii); 
    while(abs(new_psi_cont(ii)) > 2.0*pi) 
      new_psi_cont(ii) = new_psi_cont(ii) - sign(new_psi_cont(ii))*... 
          2.0*pi; 
    end; 
 
% Cross Track Heading Error Eq(12) 
 
    new_psi_errorCTE(ii) = new_psi_cont(ii) - new_psi_track(jj); 
 
% DeWrap psi_error to within +/- pi;  Normalized to Lie between +/- 180 
% degrees 
 
    while(abs(new_psi_errorCTE(ii)) > pi) 
       new_psi_errorCTE(ii) = new_psi_errorCTE(ii) - sign(... 
           new_psi_errorCTE(ii))*2.0*pi; 
    end; 
 
% **  Always Calculate this (What is This?) 
    new_Beta = new_v(ii)/U; 
%   Beta = 0.0; 
    new_cpsi_e = cos(new_psi_errorCTE(ii)+new_Beta); 
    new_spsi_e = sin(new_psi_errorCTE(ii)+new_Beta); 
 
% Distance to the ith way point projected to the track line S(t)i -   
% Eq (14) 
 
    new_s(ii) = [New_X_Way_Error(ii),New_Y_Way_Error(ii)]*[(... 
            New_X_Way_c(jj)-New_PrevX_Way_c(jj)),(New_Y_Way_c(jj)... 
            -New_PrevY_Way_c(jj))]'; 
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% s is distance to go projected to track line(goes from 0-100%L) - Eq (14) 
 
    new_s(ii) = new_s(ii)/New_SegLen(jj); 
    % Ranges from 0-100% of SegLen 
    Ratio=(1.0-new_s(ii)/New_SegLen(jj))*100.0; 
 
% Radial distance to go to next WP 
 
    new_ss(ii) = sqrt(New_X_Way_Error(ii)^2 + New_Y_Way_Error(ii)^2); 
 
% dp is angle between line of sight and current track line - Eq (16) 
 
    new_dp(ii) = atan2( (New_Y_Way_c(jj)-New_PrevY_Way_c(jj)),(... 
        New_X_Way_c(jj)-New_PrevX_Way_c(jj)) )- atan2... 
        (New_Y_Way_Error(ii),New_X_Way_Error(ii) ); 
    if(new_dp(ii) > pi), 
        new_dp(ii) = new_dp(ii) - 2.0*pi; 
    end; 
 
% Cross Track Error Definition - Eq (15) 
 
    new_cte(ii) = new_s(ii)*sin(new_dp(ii)); 
 
% If the magnitude of the CTE Heading exceeds 40 degrees, a LOS Controller 
% is used. 
 
    if( abs(new_psi_errorCTE(ii)) >= 40.0*pi/180.0 | new_s(ii) < 0.0 ), 
       new_LOS(ii) = 1; 
       new_psi_comLOS = atan2(New_Y_Way_Error(ii),New_X_Way_Error(ii)); 
       new_psi_errorLOS(ii) = new_psi_comLOS - new_psi_cont(ii); 
       if(abs(new_psi_errorLOS(ii)) > pi), 
          new_psi_errorLOS(ii) = new_psi_errorLOS(ii) - 2.0*pi*... 
          new_psi_errorLOS(ii)/abs(new_psi_errorLOS(ii)); 
       end; 
         
% Eq (8) 
 
       new_Sigma_FlightHeading = 0.9499*(new_r_com - new_r(ii)) +... 
           0.1701*new_psi_errorLOS(ii); 
 
% Eq (9) 
 
       new_dr(ii) = -1.5435*( 2.5394*new_r(ii)+ Eta_FlightHeading*tanh... 
           (new_Sigma_FlightHeading/Phi_FlightHeading));   
 
       else 
 
% Use CTE Controller if CTE Heading is less than 40 degrees 
 
       new_LOS(ii) = 0;          
       if(new_cpsi_e ~= 0.0),                % Trap Div. by Zero ! 
 
% SMC Soln 
 
% Sliding Surface - Eq (20) 
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       new_Sigma(ii) = U*new_rRM(ii)*new_cpsi_e + Lam1*U*new_spsi_e... 
           + 3.28*Lam2*new_cte(ii); 
 
% Rudder Input - Eq (21) 
 
       new_dr(ii) = (1.0/(U*b*new_cpsi_e))*(-U*a*new_rRM(ii)*... 
           new_cpsi_e + U*new_rRM(ii)^2*new_spsi_e - Lam1*U*... 
           new_rRM(ii)*new_cpsi_e - Lam2*U*new_spsi_e - new_Eta_CTE* ... 
           (new_Sigma(ii)/new_Phi_CTE)); 
       else 
        new_dr(ii) = new_dr(ii-1);       
       end; 
  end;                                 % End of CTE Controller 
 
  % Use LOS if near to loiter point 
  % if (loiter==1)& new_s(ii)<10;  new_dr(ii)=new_drlos(ii);end; 
     
  % Surface Phase Logic (Independent of LOS or CTE) 
 
  if(SurfPhase == TRUE) 
      if(new_SURFACE_TIMER_ACTIVE == FALSE) 
         if(Ratio > 40.0) 
            % Start a Timer 
            new_SURFACE_TIMER_ACTIVE = TRUE; 
            new_Depth_com(ii) = 0.0; 
            new_SurfaceWait = new_SurfaceTime(1) + tt(ii); 
            new_SurfaceWait 
         end; 
      end; 
  end; 
  if(new_SURFACE_TIMER_ACTIVE == TRUE) 
     if(tt(ii) >= new_SurfaceWait) 
        new_SURFACE_TIMER_ACTIVE = FALSE; 
        new_Depth_com(ii) = new_WayPointVertDist_com(1); 
        new_SurfPhase(1) = 0; 
        else 
            new_Depth_com(ii) = 0.0; 
     end; 
  end; 
  if(abs(new_dr(ii)) > 0.4) 
      new_dr(ii) = 0.4*sign(new_dr(ii)); 
  end; 
 
 % Model drl is the actual lagged rudder, dr is the rudder command. 
 % taudr = 0.255; 
    
 %  drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr; 
 % if(abs(drl(i)) > 0.4) 
 %    drl(i) = 0.4*sign(drl(i)); 
 % end; 
   new_x_dot(:,ii+1) = [ A(1,1)*new_v(ii) + A(1,2)*new_r(ii) + B(1)*... 
           new_dr(ii); A(2,1)*new_v(ii) + A(2,2)*new_r(ii) + B(2)*... 
           new_dr(ii); new_r(ii)]; 
   new_x(:,ii+1) = new_x(:,ii)+dt*new_x_dot(:,ii);            
   new_v(ii+1)   = new_x(1,ii+1)/12; 
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   new_r(ii+1)   = new_x(2,ii+1); 
   new_psi(ii+1) = new_x(3,ii+1); 
   new_rRM(ii+1) = new_r(ii+1); 
 
 % Added 
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i)); 
 % psi(i+1) = psi(i) + dt*rRM(i); 
 
 % Throw in some Waves 
 % Uc(i) = -0.5*sin(2*pi*t(i)/5); 
 % Vc(i) =  0.5*sin(2*pi*t(i)/5); 
    
 % Model using system ID results from Bay tests 
    
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i)); 
 % psi(i+1) = psi(i) + dt*rRM(i); 
 % side slip added proprtional to turn rate from AZORES data V in ft/sec 
 % v(i+1) = 1.0*rRM(i+1)*3.28; 
    
   Uc = 0.0;  
   Vc = 0.0; 
 
   % Kinematics 
    
   New_X(ii+1) = New_X(ii) + (Uc + (U/3.28)*cos(new_psi(ii)) - new_v(ii)... 
       /3.28*sin(new_psi(ii)) )*dt; 
   New_Y(ii+1) = New_Y(ii) + (Vc + (U/3.28)*sin(new_psi(ii)) + new_v(ii)... 
       /3.28*cos(new_psi(ii)) )*dt; 
   
   % Check to See if we are Within the Watch_Radius (set to 1 foot here) 
    
   if(sqrt(New_X_Way_Error(ii)^2.0 + New_Y_Way_Error(ii)^2.0)... 
           <= 1 | new_s(ii) < 0.0),               
        
   % Next Line ends mission if within Watch Radius. 
        
   disp(sprintf('WayPoint %d Reached',jj)); break;    
      if(jj==No_tracks),               
         PLOT_PART = 2; 
         disp(sprintf('PLOT_PART = 2')); 
         break; 
      end; 
      New_PrevX_Way_c(jj+1) = New_X_Way_c(jj); 
      New_PrevY_Way_c(jj+1) = New_Y_Way_c(jj); 
  end; 
end 
end 
%************************************************************************** 
dr(i+1) = dr(i); 
cte(i+1) = cte(i);  
s(i+1) = s(i); 
ss(i+1) = ss(i); 
 
%new_dr(ii+1) = new_dr(ii); 
%new_cte(ii+1) = new_cte(ii);  
%new_s(ii+1) = new_s(ii); 
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%new_ss(ii+1) = new_ss(ii); 
 
% Plotting 
 
if PLOT_PART == 1, 
 
   % Plot of Time vs Rudder Angle & Vehicle Heading 
 
   figure(1); 
   plot(t([1:i+1]),psi*180/pi); 
   hold; 
   plot(t([1:i+1]),dr*180/pi,'r:');grid; 
   title('Time vs Rudder Angle and Vehicle Heading'); 
   xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)'); 
   legend('Vehicle Heading', 'Rudder Angle'); 
   print -tiff -depsc figure1b 
   hold;zoom on; 
    
   % Plot of Time vs CTE, Distance to Go to Projected Track, Radial 
   % Distance to Next Waypoint 
    
   figure(2); 
   plot(t([1:i+1]),cte); 
   hold; 
   plot(t([1:i+1]),s,'r:'); 
   plot(t([1:i+1]),ss,'g--');grid; 
   title('Time vs Cross Track Error') 
   xlabel('Time (sec)');ylabel('Distance (feet)'); 
   legend('Cross Track Error', 'Distance to Go Projected to Track', ... 
   'Radial Distance to Go to Next Way Point'); 
   print -tiff -depsc figure2b 
   hold;zoom on; 
 
elseif PLOT_PART == 0, 
     
   % Plot of Time vs Rudder Angle & Vehicle Heading for Rendezvous Mission 
    
   figure(3); 
   plot(t([1:i+1]),psi*180/pi, 'y'); 
   hold; 
   plot(tt([1:ii+1]),new_psi*180/pi, 'y:'); 
   plot(t([1:i+1]),dr*180/pi,'r'); 
   plot(tt([1:ii]),new_dr*180/pi, 'r:'); 
   title('Time vs Rudder Angle and Vehicle Heading - 0'); 
   xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)'); 
   legend('Vehicle Heading Before Mission Abort',... 
       'Vehicle Heading After Mission Abort',...    
       'Rudder Angle Before Mission Abort',... 
       'Rudder Angle After Mission Abort'); 
   print -tiff -depsc figure3b 
   hold;grid; 
 
   % Plot of Time vs CTE, Distance to Go to Projected Track, Radial 
   % Distance to Next Waypoint for Rendezvous Mission 
 
   figure(4); 
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   plot(t([1:i+1]), cte, 'y'); 
   hold; 
   plot(tt([1:ii]), new_cte, 'y:'); 
   plot(t([1:i+1]), s,'r'); 
   plot(tt([1:ii]), new_s, 'r:'); 
   plot(t([1:i+1]), ss,'g');grid; 
   plot(tt([1:ii]), new_ss, 'g:'); 
   title('Time vs Cross Track Error - 0') 
   xlabel('Time (sec)'); ylabel('Distance (feet)'); 
   legend('Cross Track Error Before Abort',... 
       'Cross Track Error After Abort',... 
       'Distance to Go Projected to Track Before Abort', ... 
       'Distance to Go Projected to Track After Abort',... 
       'Radial Distance to Go to Next Way Point Before Abort',... 
       'Radial Distance to Go to Next Way Point After Abort');    
   print -tiff -depsc figure4b 
   hold;zoom on; 
 
end; 
 
   % Plot of Actual Track and Planned Track 
   % Modified on 05 Feb 2002 - To include waypoint2.m modifications. 
    
   if PLOT_PART == 1, 
      figure(5); 
      plot(Y,X,'b--');grid;                              % Actual Track 
      title('ARIES Track - Actual and Planned'); 
      xlabel('Y (feet)');ylabel('X (feet)'); 
      hold; 
    
   % Planned Track 
      plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r'); 
      for ii=2:No_tracks, 
         plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r'); 
      end; 
      legend('Actual Track', 'Planned Track',4); 
      print -tiff -depsc figure5b 
      hold; zoom on 
    
   elseif PLOT_PART == 0 | PLOT_PART == 2, 
        
      % Plot of Planned Track, Track after Mission Change, Rendezvous 
      % Point and Initial Track 
       
      figure(6); 
      plot(Y,X,'b--');grid;                              % Actual Track 
      title('ARIES Track - Actual and Planned'); 
      xlabel('Y (feet)');ylabel('X (feet)'); 
      hold; 
      plot(New_Y, New_X,'g-.'); 
      plot(New_Y_Way_c, New_X_Way_c,'d'); 
    
   % Planned Track 
   plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r'); 
   for ii=2:No_tracks, 
      plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r'); 
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   end; 
   legend('Initial Track', 'Track After Mission Change'... 
       , 'Rendezvous Point', 'Planned Track',4); 
   AXIS([-100 250 -80 60]) 
   print -tiff -depsc figure6b 
   hold; zoom on 
%      plot([Y_Way_c(2) Y_Way_c(1)],[X_Way_c(2) X_Way_c(1)],'r'); 
%      plot([Y_Way_c(3) Y_Way_c(2)],[X_Way_c(3) X_Way_c(2)],'r'); 
%      plot([Y_Way_c(4) Y_Way_c(3)],[X_Way_c(4) X_Way_c(3)],'r'); 
%      plot([Y_Way_c(5) Y_Way_c(4)],[X_Way_c(5) X_Way_c(4)],'r'); 
end 
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APPENDIX C.  MATLAB FILE COEFFICIENTS.M 
This appendix contains a MATLAB file that finds the coefficients of the 

longitudinal equation of motion using the method of least squares.  It then disregards 

those values and uses the hand-manipulated values in order to produce a model for speed. 
% This version doubles all the RPS values based on the Tecnadyne Data. 
 
% Loads the 3 .d files from the experiment conducted on 17APR02. 
 
load d041702_03.d; 
load d041702_04.d; 
load d041702_05.d; 
a = d041702_03;  % 1st run 
b = d041702_04;  % 2nd run 
c = d041702_05;  % 3rd run 
 
% a(:,31) is left screw voltage for 1st run 
% a(:,32) is right screw voltage for 1st run 
% a(:,17) is u in m/s 
 
% First Calculate Average Thruster RPS 
 
a(:,39) = ((a(:,31)*133.8047)+(a(:,32)*124.4615))/60;  %Avg rps, Run 1 
b(:,39) = ((b(:,31)*133.8047)+(b(:,32)*124.4615))/60;  %Avg rps, Run 2 
c(:,39) = ((c(:,31)*133.8047)+(c(:,32)*124.4615))/60;  %Avg rps, Run 3 
 
[j,k] = size(a);                          % Figures size of data matrices 
[jj, kk] = size(b); 
[jjj, kkk] = size(c); 
 
u1 = []; u2 = []; u3 =[]; uu1 =[]; uu2 = []; uu3 =[]; 
y1 = []; y2 = []; y3 = []; 
 
%.......................................................................... 
 
% EOM for Longitudinal Motion: 
 
% (m-X_udot_r)udot_r = [X_u * u_r * abs(u_r)] + [alpha * n * abs(n)] - 
%     [gamma * abs(n) * u_r] 
 
% (m-X_udot_r) = 215.47 kg   ==>>  z = 1/(m-X_udot_r) = 0.004641 
 
% udot_r = (u_r(t+1) - u_r(t))/dt  therefore, 
 
% u_r(t+1) - u_r(t) =  (z*dt)[(X_u * f(u_r)) + (alpha * n * abs(n)) -  
%     (gamma * n * abs(u_r)) 
 
% dt = 0.125  ==>>  (z*dt) = 0.004641 * 0.125. 
 
% In matrix form:  y = H * Theta 
 
% where H = (z*dt)[f(u_r) n*abs(n) n*abs(u_r)] and Theta = [X alpha gamma]' 
% and y = u_r(t+1) - u_r(t) 
 



76 

z = 0.004641; 
dt = 0.125; 
 
% Calculations for Run 1 
 
for n1 = 2:j;                        
    u1(n1-1) = a(n1,17);                  % u_r(t+1) 
    n1 = n1+1; 
end 
 
u1 = u1';                                 % Makes u1 a j-1 x 1 matrix 
 
H11 = []; H12 = []; H13 = []; H1 = []; 
 
for nn1 = 1:j-1; 
    H11(nn1) = (z*dt) * (a(nn1,17)*abs(a(nn1,17))); 
    H12(nn1) = (z*dt) * (a(nn1,39)* abs(a(nn1,39))); 
    H13(nn1) = (z*dt) * (a(nn1,17)*abs(a(nn1,39))); 
    uu1(nn1) = a(nn1,17);                 % u_r(t) 
    nn1 = nn1+1; 
end 
 
uu1 = uu1';                               % Makes uu1 a j-1 x 1 matrix   
y1 = u1-uu1;                              % y = u_r(t+1) - u_r(t)   
H1 = [H11' H12' H13'];                    % Makes H a j-1 x 3 matrix 
 
theta_hat1 = inv(H1' * H1) * H1' * y1;    % 3 x 1 matrix 
error1 = y1 - (H1 * theta_hat1); 
%.......................................................................... 
 
% Calculations for Run 2 
 
for n2 = 2:jj;                        
    u2(n2-1) = b(n2,17);                  % u_r(t+1) 
    n2 = n2+1; 
end 
 
u2 = u2';                                 % Makes u2 a jj-1 x 1 matrix 
 
H21 = []; H22 = []; H23 = []; H2 = []; 
 
for nn2 = 1:jj-1; 
    H21(nn2) = (z*dt) * (b(nn2,17)*abs(b(nn2,17))); 
    H22(nn2) = (z*dt) * (b(nn2,39)*abs(b(nn2,39))); 
    H23(nn2) = (z*dt) * (b(nn2,17)*abs(b(nn2,39))); 
    uu2(nn2) = b(nn2,17);                 % u_r(t) 
    nn2 = nn2+1; 
end 
 
uu2 = uu2';                               % Makes uu2 a jj-1 x 1 matrix 
y2 = u2-uu2;                              % y = u_r(t+1) - u_r(t) 
H2 = [H21' H22' H23'];                    % Makes H a jj-1 x 3 matrix 
 
theta_hat2 = inv(H2' * H2) * H2' * y2;    % 3 x 1 matrix 
error2 = y2 - (H2 * theta_hat2); 
%.......................................................................... 
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% Calculations for Run 3 
 
for n3 = 2:jjj;                        
    u3(n3-1) = c(n3,17);                  % u_r(t+1) 
    n3 = n3+1; 
end 
 
u3 = u3';                                 % Makes u3 a jjj-1 x 1 matrix 
 
H31 = []; H32 = []; H33 = []; H3 = []; 
 
for nn3 = 1:jjj-1; 
    H31(nn3) = (z*dt) * (c(nn3,17)*abs(c(nn3,17))); 
    H32(nn3) = (z*dt) * (c(nn3,39)*abs(c(nn3,39))); 
    H33(nn3) = (z*dt) * (c(nn3,17)*abs(c(nn3,39))); 
    uu3(nn3) = c(nn3,17);                 % u_r(t) 
    nn3 = nn3+1; 
end 
 
uu3 = uu3';                               % Makes uu3 a jjj-1 x 1 matrix 
y3 = u3-uu3;                              % y = u_r(t+1) - u_r(t) 
H3 = [H31' H32' H33'];                    % Makes H a jjj-1 x 3 matrix 
 
 
theta_hat3 = inv(H3' * H3) * H3' * y3;    % 3 x 1 matrix 
error3 = y3 - (H3 * theta_hat3); 
 
%.......................................................................... 
 
% Summary of coefficients for all 3 runs and average value. 
 
avg =[]; 
format 
avg_X = (theta_hat1(1,1) + theta_hat2(1,1) + theta_hat3(1,1))/3; 
avg_a = (theta_hat1(2,1) + theta_hat2(2,1) + theta_hat3(2,1))/3; 
avg_g = (theta_hat1(3,1) + theta_hat2(3,1) + theta_hat3(3,1))/3; 
avgs = [avg_X avg_a avg_g]; 
avgs = avgs'; 
all_theta_hats = [theta_hat1 theta_hat2 theta_hat3 avgs] 
 
% all_theta_hats = 
%      Run 1     Run 2     Run 3      Avg    
%   -13.4933  -16.7915  -16.7587  -15.6812  X_u 
%     0.4445    0.3115    0.1957    0.0793  alpha 
%     1.6506    2.6863    3.1466    1.2473  gamma 
 
%a(39) is data for revs 
%a(17) is the speed 
%Prediction 
 
% Manipulated Values 
avg_X = -10.5;     % Based on C_D of 0.2 
avg_g = 0.05; 
avg_a=0.155; 
model_u1 = []; model_u2 = []; model_u3 = []; 
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% Run 1 Model 
model_u1(1) = a(1,17); 
for m = 1:j-1; 
    model_u1(m+1) = (z*dt)*((avg_X * model_u1(m) * abs(model_u1(m))) +... 
        (avg_a * a(m,39) * abs(a(m,39))) - (avg_g * a(m,39) *... 
        abs(model_u1(m)))) + model_u1(m); 
    m = m +1; 
end 
model_u1 = model_u1'; 
 
% Run 2 Model 
model_u2(1) = b(1,17); 
for mm = 1:jj-1; 
    model_u2(mm+1) = (z*dt)*((avg_X * model_u2(mm) * abs(model_u2(mm)))+... 
        (avg_a * b(mm,39) * abs(b(mm,39))) - (avg_g * b(mm,39) * ... 
        abs(model_u2(mm)))) + model_u2(mm); 
    mm = mm +1; 
end 
model_u2 = model_u2'; 
 
% Run 3 Model 
model_u3(1) = c(1,17); 
for mmm = 1:jjj-1; 
    model_u3(mmm+1) = (z*dt)*((avg_X * model_u3(mmm) * ... 
        abs(model_u3(mmm))) + (avg_a * c(mmm,39) * abs(c(mmm,39))) -... 
        (avg_g * c(mmm,39) * abs(model_u3(mmm)))) + model_u3(mmm); 
    mmm = mmm +1; 
end 
model_u3 = model_u3'; 
 
figure(1) 
orient tall 
subplot(3,1,1) 
plot(model_u1(:,1)) 
hold 
plot(a(2:j,17), 'r'); grid 
legend('Model', 'Actual', 4) 
title('Vehicle Speed - Run 1'); xlabel('Time Units');  
ylabel('Long. Speed') 
hold 
 
subplot(3,1,2) 
plot(model_u2(:,1)) 
hold 
plot(b(2:jj,17), 'r'); grid 
legend('Model', 'Actual', 4) 
title('Vehicle Speed - Run 2'); xlabel('Time Units');  
ylabel('Long. Speed') 
hold 
 
subplot(3,1,3) 
plot(model_u3(:,1)) 
hold 
plot(c(2:jjj,17), 'r'); grid 
legend('Model', 'Actual', 4) 
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title('Vehicle Speed - Run 3'); xlabel('Time Units');  
ylabel('Long. Speed') 
print -tiff -depsc modelplot 
hold 
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APPENDIX D.  MATLAB FILE FINALRENDEZVOUS.M 
This appendix contains the MATLAB code that produces a simulation of a 

rendezvous in space and time using a sliding mode control speed controller. 
% This is the final program.  It adds an updated speed controller based on 
% the control law and the longitudinal equation of motion. 
 
% 15 May 2002 
 
whitebg('k'); 
% State = [v r psi] 
clear all 
TRUE  = 1; 
FALSE = 0; 
 
% Converts Degrees to Radians & Radians to Degrees 
 
DegRad = pi/180; 
RadDeg = 180/pi; 
 
% State Model Parameters 
 
W   = 600.0;                    % Weight in LB 
U = 1.4*3.28;                   % Forward Speed in ft/s (1.4 m/s) 
g = 32.174;                     % Gravity in ft/sec^2 
Boy = 500.0;                    % Bouyancy ? 
xg  = 0.125/12.0;               % ?? 
m = W/g;                        % Mass 
rho = 1.9903;                   % Density of Seawater in slugs/ft^3 
L = 10;                         % Length in ft of ARIES 
Iz = (1/12)*m*(1.33^2 + 10^2);  % Approx. Using I = 1/12*m*(a^2 + b^2) 
% where a is width & b is length 
Iz = Iz*5.0; 
 
% Coefficients 
 
Yv_dot = -0.03430*(rho/2)*L^3;  % Added Mass in Sway Coefficient. 
Yr_dot = -0.00178*(rho/2)*L^4;  % Added Mass in Yaw Coefficient. 
Yv = -0.10700*(rho/2)*L^2;      % Coeff. of Sway Force induced by Side Slip 
Yr = 0.01187*(rho/2)*L^3;       % Coeff. of Sway Force induced by Yaw 
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed 
Ydrb = (0.01241*(rho/2)*L^2)/2.0; % So don't use these equations 
 
Nv_dot = -0.00178*(rho/2)*L^4; % Added Mass Moment of Inertia in Sway Coeff 
%Nr_dot = -0.00047*(rho/2)*L^5; 
Nr_dot = -Iz;                  % Added Mass Moment of Inertia in Yaw Coeff 
Nv = -0.00769*(rho/2)*L^3;     % Coeff. of Sway Moment from Side Slip 
Nr = -0.00390*(rho/2)*L^4;     % Coeff. of Sway Moment from Yaw 
%Ndrs = -2.6496/2.0;           % Since Bow & Stern Lower Rudders Removed 
%Ndrb = 1.989/2.0; 
 
% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length 
% in Feet - Since Bow & Stern Lower Rudders Removed 
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Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0;    
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0;  
 
% Combining Stern & Bow Rudder Effectivness 
 
Ndr = Ndrs - Ndrb; 
Ydr = Ydrs - Ydrb;                           % Cancel Out 
 
% Matrices 
 
m1 = m - Yv_dot; 
m2 = m*xg - Yr_dot; 
m3 = m*xg - Nv_dot; 
m4 = Iz - Nr_dot; 
Y1 = Yv; 
Y2 = Yr; 
Y3 = U^2*Ydr; 
N1 = Nv; 
N2 = Nr; 
N3 = U^2*Ndr; 
A = [Y1*U Y2*U;N1*U N2*U]; 
B = [Y3 N3]'; 
M = [m1 m2;m3 m4]; 
A1 = inv(M)*A; 
B1 = inv(M)*B; 
AO = [A1(1,1) A1(1,2) 0; 
    A1(2,1) A1(2,2) 0; 
    0 1 0]; 
BO = [B1;0]; 
dt = 0.125; 
t = [0:dt:1000]'; 
size(t); 
 
% Set initial conditions 
 
start=10; 
v(1)   = 0.0;                       % Initial Side Slip Velocity 
r(1)   = 0.0;                       % Initial Yaw 
U(1)   = 1.4*3.28;                  % Initial Forward Speed 
rRM(1) = r(1); 
psi(1) = 50.0*DegRad;               % Initial Heading of ARIES 
X(1) = -80.0;                       % Initial Position in meters 
Y(1) = 0.0; 
ucom=[]; 
% Convert to Feet ? 
 
% This data from track.out file for ARIES in Waiting Pattern 
% (12 Mar 02) 
 
No_tracks=4;                        % Sets # of Tracks = # of Rows 
 
Track=[ 50.0  0.0   2.75 2.75  0  1.25  1.00 0 25.00 8.00 40.00 
    50.0 -60.0  2.75 2.75  0  1.25  1.00 0 25.00 8.00 200.00 
    -70.0 -60.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 200.00 
    -70.0  0.0  2.75 2.75  0  1.25  1.00 0 25.00 2.00 40.00]; 
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track=Track(:,1:2);             % Defines track as Track(X,Y) 
SurfaceTime = Track(:,9);       % Col 9 of Track is Surface Time for Pop-up 
SurfPhase   = Track(:,8);       % Col 8 of Track designates if Pop-up 
 
% This is the REMUS Search Pattern 
% 12 Mar 02 
 
Y_REMUS = [200 50 50 200 200 50 50 200 200 50 50 200 200 50]; 
X_REMUS = [50 50 30 30 10 10 -10 -10 -30 -30 -50 -50 -70 -70]; 
 
% Read in way points from track data assumes track is loaded 
 
for j=1:No_tracks,    
    X_Way_c(j)     = track(j,1);   
    Y_Way_c(j)     = track(j,2); 
end; 
 
% Set start position 
 
PrevX_Way_c(1) = -80.0;         % meters 
PrevY_Way_c(1) =  00.0;         % meters 
r_com = 0.0; 
W_R = 10.0;                     % Sets initial Watch Radius (meters) 
a = -.3; 
b = (9/24)*a; 
x(:,1) = [v(1);r(1);psi(1)]; 
 
% Below are in British Units for CTE Sliding Mode 
%Lam1 = 0.75; 
%Lam2 = 0.5; 
Lam1 = 2.0; 
Lam2 = 1.0; 
Eta_FlightHeading = 1.0; 
Phi_FlightHeading = 0.5; 
 
% Below for tanh 
 
Eta_CTE = 0.1; 
Eta_CTE_Min = 1.0; 
Phi_CTE = 0.5; 
Uc = []; 
Vc = []; 
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0')); 
 
% Total Track Length between initial waypoint and waypoint (1) - Eq (10) 
 
SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)... 
    -PrevY_Way_c(1))^2); 
 
% Track Angle of first track - Eq (11) 
 
psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1)); 
 
% Computes track lengths and track angles for each track 
 
for j=2:No_tracks, 
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    SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-... 
        Y_Way_c(j-1))^2); 
    psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1)); 
end; 
j=1; 
Sigma = []; 
Depth_com = []; 
dr=[]; 
drl = []; 
drl(1) = 0.0; 
Depth_com(1) = 5.0; 
WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0]; 
SURFACE_TIMER_ACTIVE = FALSE; 
 
% Starts a loop that computes values for each data point corresponding to 
% a time value (in this case, every 0.125 seconds from 1 to 1000 seconds) 
 
for i=1:length(t)-1, 
    Depth_com(i) = WayPointVertDist_com(j); 
     
    % Difference between current vehicle position & the next 
    % waypoint Eq(13) 
     
    X_Way_Error(i) = X_Way_c(j) - X(i); 
    Y_Way_Error(i) = Y_Way_c(j) - Y(i); 
     
    % DeWrap psi to within +/- 2.0*pi; Makes Heading Angle to lie between 
    % 0-360 degrees 
     
    psi_cont(i) = psi(i); 
    while(abs(psi_cont(i)) > 2.0*pi) 
        psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi; 
    end; 
     
    % Cross Track Heading Error Eq(12) 
     
    psi_errorCTE(i) = psi_cont(i) - psi_track(j); 
     
    % DeWrap psi_error to within +/- pi;  Normalized to Lie between +/- 180 
    % degrees 
     
    while(abs(psi_errorCTE(i)) > pi) 
        psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi; 
    end; 
     
    % **  Always Calculate this (What is This?) 
    Beta = v(i)/U(i); 
    %  Beta = 0.0; 
    cpsi_e = cos(psi_errorCTE(i)+Beta); 
    spsi_e = sin(psi_errorCTE(i)+Beta); 
     
    % Distance to the ith way point projected to the track line S(t)i -   
    % Eq (14) 
     
    s(i) = [X_Way_Error(i),Y_Way_Error(i)]*[(X_Way_c(j)-... 
            PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]'; 
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    % s is distance to go projected to track line 
    % (goes from 0-100%L) - Eq (14) 
     
    s(i) = s(i)/SegLen(j); 
    Ratio=(1.0-s(i)/SegLen(j))*100.0;     % Ranges from 0-100% of SegLen 
     
    % Radial distance to go to next WP 
     
    ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2); 
     
    % dp is angle between line of sight and current track line - Eq (16) 
     
    dp(i) = atan2( (Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-... 
        PrevX_Way_c(j)) )- atan2( Y_Way_Error(i),X_Way_Error(i) ); 
    if(dp(i) > pi), 
        dp(i) = dp(i) - 2.0*pi; 
    end; 
     
    % Cross Track Error Definition - Eq (15) 
     
    cte(i) = s(i)*sin(dp(i)); 
     
    % If the magnitude of the CTE Heading exceeds 40 degrees, a LOS  
    % Controller is used. 
     
    if( abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0 ), 
        LOS(i) = 1; 
        psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i));    % Eq (22) 
        psi_errorLOS(i) = psi_comLOS - psi_cont(i);           % Eq (23) 
        % LOS Error 
        if(abs(psi_errorLOS(i)) > pi), 
            psi_errorLOS(i) = psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)... 
                /abs(psi_errorLOS(i)); 
        end; 
         
        % Eq (8) 
         
        Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*... 
            psi_errorLOS(i); 
         
        % Eq (9) 
         
        dr(i) = -1.5435*( 2.5394*r(i)+ Eta_FlightHeading*tanh... 
            (Sigma_FlightHeading/Phi_FlightHeading));   
         
    else 
         
        % Use CTE Controller if CTE Heading is less than 40 degrees 
         
        LOS(i) = 0;          
        if(cpsi_e ~= 0.0),                % Trap Div. by Zero ! 
             
            % SMC Soln 
             
            % Sliding Surface - Eq (20) 
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            Sigma(i) = U(i)*rRM(i)*cpsi_e + Lam1*U(i)*spsi_e + 3.28*Lam2... 
                *cte(i); 
             
            % Rudder Input - Eq (21) 
             
            dr(i) = (1.0/(U(i)*b*cpsi_e))*(-U(i)*a*rRM(i)*cpsi_e + U(i)*... 
                rRM(i)^2*spsi_e - Lam1*U(i)*rRM(i)*cpsi_e - Lam2*U(i)*... 
                spsi_e - Eta_CTE*(Sigma(i)/Phi_CTE)); 
        else 
            dr(i) = dr(i-1);       
        end; 
    end;                                 % End of CTE Controller 
     
    % Use LOS if near to loiter point 
    % if (loiter==1)& s(i)<10;  dr(i)=drlos(i);end; 
     
    % Surface Phase Logic (Independent of LOS or CTE) 
     
    if(SurfPhase(j) == TRUE) 
        if(SURFACE_TIMER_ACTIVE == FALSE) 
            if(Ratio > 40.0) 
                % Start a Timer 
                SURFACE_TIMER_ACTIVE = TRUE; 
                Depth_com(i) = 0.0; 
                SurfaceWait = SurfaceTime(j) + t(i); 
                SurfaceWait 
            end; 
        end; 
    end; 
    if(SURFACE_TIMER_ACTIVE == TRUE) 
        if(t(i) >= SurfaceWait) 
            SURFACE_TIMER_ACTIVE = FALSE; 
            Depth_com(i) = WayPointVertDist_com(j); 
            SurfPhase(j) = 0; 
        else 
            Depth_com(i) = 0.0; 
        end; 
    end; 
    if(abs(dr(i)) > 0.4) 
        dr(i) = 0.4*sign(dr(i)); 
    end; 
     
    % Model drl is the actual lagged rudder, dr is the rudder command. 
    % taudr = 0.255; 
     
    %  drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr; 
    % if(abs(drl(i)) > 0.4) 
    %    drl(i) = 0.4*sign(drl(i)); 
    % end; 
     
    % Jay Johnson Model 
     
    Yv  = -68.16; 
    Yr  = 406.3; 
    Ydr = 70.0; 
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    Nv  = -10.89; 
    Nr  = -88.34; 
    Ndr = -35.47; 
     
    MY = 456.76; 
    IN = 215; 
     
    M = diag([MY,IN,1]); 
    AA = [Yv,Yr,0;Nv,Nr,0;0,1,0]; 
    BB = [Ydr;Ndr;0];   
    A  = inv(M)*AA; 
    B  = inv(M)*BB; 
     
    % x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i); 
    %                  A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i); 
    %                  r(i)]; 
    x_dot(:,i+1) = [ A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i); 
        A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i); 
        r(i)]; 
     
    x(:,i+1) = x(:,i)+dt*x_dot(:,i);            
    v(i+1)   = x(1,i+1)/12; 
    r(i+1)   = x(2,i+1); 
    U(i+1) = 1.4*3.28;         % Constant speed of 2.72 knots 
    psi(i+1) = x(3,i+1); 
    rRM(i+1) = r(i+1); 
     
    % Added 
    % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i)); 
    % psi(i+1) = psi(i) + dt*rRM(i); 
     
    % Throw in some Waves 
    % Uc(i) = -0.5*sin(2*pi*t(i)/5); 
    % Vc(i) =  0.5*sin(2*pi*t(i)/5); 
     
    % Model using system ID results from Bay tests 
     
    % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i)); 
    % psi(i+1) = psi(i) + dt*rRM(i); 
    % side slip added proprtional to turn rate from AZORES data V in ft/sec 
    % v(i+1) = 1.0*rRM(i+1)*3.28; 
     
    Uc = 0.0;  
    Vc = 0.0; 
     
    % Kinematics 
     
    X(i+1) = X(i) + (Uc + (U(i)/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i))... 
        )*dt; 
    Y(i+1) = Y(i) + (Vc + (U(i)/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i))... 
        )*dt; 
     
    %********************************************************************** 
     
    % This should abort @ 30 seconds if input is empty or 'Y' 
    % This modification done on 05 Feb 2002 - original file is waypoint1.m 
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    if i == 240, 
        K = input(... 
            'Is Rendezvous Required? (Enter 1 for Yes, 0 for No)-->>'); 
        if isempty(K)==1; K = 1; break; end; 
        if K == 1; break; 
        else i = i; end; 
    end 
     
    %********************************************************************** 
     
    % Check to See if we are Within the Watch_Radius  
     
    if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),       
        disp(sprintf('WayPoint %d Reached',j)); 
        if(j==No_tracks), 
            PLOT_PART = 1; 
            disp(sprintf('PLOT_PART = 1')); 
            break; 
        end; 
        PrevX_Way_c(j+1) = X_Way_c(j); 
        PrevY_Way_c(j+1) = Y_Way_c(j); 
        j=j+1; 
    end; 
     
end; %end of i loop 
 
%************************************************************************** 
 
% Requests Rendezvous Point Information 
% This modification done on 05 Feb 2002 - original file waypoint2.m 
 
if j == No_tracks, 
    disp(sprintf('Mission Complete'));  
else 
    new_r_com = 0.0; 
    new_v(1) = v(i+1); 
    new_r(1) = r(i+1); 
    new_rRM(1) = new_r(1); 
    new_psi(1) = psi(i+1); 
    New_X(1) = X(i+1); 
    New_Y(1) = Y(i+1); 
    New_No_Tracks = 1; 
    New_Track = input('Enter 12 Column Track, i.e., [1 1 ...]-->>'); 
    new_track = New_Track(:,1:2); 
    new_SurfaceTime = New_Track(:,9); 
    new_Surfphase = New_Track(:,8); 
     
    %********************************************************************** 
    new_U(1) = U(i+1)/3.28;      % Sets Initial Rendezvous Speed to 1.4 m/s  
    % new_U in meters/sec. 
    new_time(1) = New_Track(:,12);  % Desired Time to Rendezvous in seconds 
    overall_distance_travelled(1) = 0; 
    distance_travelled(1) = 0; 
    time_used(1) = 0; 
    time_remaining(1) = new_time(1); 
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    real_time(1) = 0; 
    accel(1) = 0.03;                 % Sets Acceleration to 0.03 m/s^2 
    decel(1) = 0.0249; 
    ncom(1) = 12; 
    % Sets Deceleration to 0.0249 m/s^2 
    %********************************************************************** 
     
    for jj = 1:New_No_Tracks, 
        New_X_Way_c(jj) = new_track(jj,1); 
        New_Y_Way_c(jj) = new_track(jj,2); 
    end; 
    New_PrevX_Way_c(1) = X(i+1);        % Sets Abort Posit as start of new 
    New_PrevY_Way_c(1) = Y(i+1);        % track. 
    % Below for tanh 
    new_Eta_CTE = 0.1; 
    new_Eta_CTE_Min = 1.0; 
    new_Phi_CTE = 0.5; 
    PLOT_PART = 0; disp(sprintf('PLOT_PART = 0')); 
    new_x(:,1) = [new_v(1); new_r(1); new_psi(1)]; 
     
    % Total Track Length between abort point and rendezvous point 
     
    New_SegLen(1) = sqrt((New_X_Way_c(1)-New_PrevX_Way_c(1))^2+... 
        (New_Y_Way_c(1) - New_PrevY_Way_c(1))^2) 
     
    % Track Angle of track between abort point and rendezvous point 
     
    new_psi_track(1) = atan2(New_Y_Way_c(1)-New_PrevY_Way_c(1),... 
        New_X_Way_c(1)-New_PrevX_Way_c(1)); 
     
    %********************************************************************** 
    % Determines if the Mission is Feasible - Can Distance be covered in  
    % time required traveling at maximum speed of 3.5 knots or Is time  
    % required to be at the rendezvous too much for vehicle travelling at  
    % minimum speed of 0.5 knots? (28 Feb 02) 
    % Added 10 extra meters to account for curvature of path (14 May 02) 
     
    if new_time > ((New_SegLen(1)+10)/(1.8)) &... 
            new_time < ((New_SegLen(1)+10)/(0.2571)),   
        disp('Mission Feasible'); 
    else disp('Mission Not Feasible');  
        break;                           % Ends Simulation if Not Feasible 
    end 
     
    %********************************************************************** 
    % Determines if there is enough length to achieve deceleration or 
    % acceleration - (12 Mar 02) 
     
    decel_Len = abs(((0.2571)^2 - (1.4)^2)/(2*0.0249)); 
    accel_Len = ((1.8)^2 - (1.4)^2)/(2*0.03); 
    time_of_decel = 114;         %Time to decel from 1.4 m/s to 0.2571 m/s 
    time_left = New_Track(:,12)-time_of_decel; 
    distance_remaining = New_SegLen(1)-decel_Len; 
    if distance_remaining > 0.2571 * time_left, 
        disp('Mission Feasible for Deceleration'); 
    else disp('Mission Not Feasible for Deceleration'); 
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        break; 
    end 
     
    %********************************************************************** 
     
    % Starts loop that computes values for each data point corresponding to 
    % a time value along new track 
     
    jj=1; 
    new_Sigma = []; 
    new_Depth_com = []; 
    new_dr=[]; 
    new_drl = []; n = []; 
    new_drl(1) = 0.0; 
    new_Depth_com(1) = 5.0; 
    new_WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0]; 
    new_SURFACE_TIMER_ACTIVE = FALSE; 
    tt = [t(i+1):dt:3*new_time]'; 
    size(tt); 
     
    % Start of Loop for Rendezvous Point 
     
    for ii = 1:length(tt)-1, 
         
        new_Depth_com(ii) = new_WayPointVertDist_com(jj); 
        New_X_Way_Error(ii) = New_X_Way_c(jj) - New_X(ii); 
        New_Y_Way_Error(ii) = New_Y_Way_c(jj) - New_Y(ii); 
        new_psi_cont(ii) = new_psi(ii); 
        while(abs(new_psi_cont(ii)) > 2.0*pi) 
            new_psi_cont(ii) = new_psi_cont(ii) - sign(new_psi_cont(ii))*... 
                2.0*pi; 
        end; 
         
        % Cross Track Heading Error Eq(12) 
         
        new_psi_errorCTE(ii) = new_psi_cont(ii) - new_psi_track(jj); 
         
        % DeWrap psi_error to within +/- pi;  Normalized to Lie between +/- 
        % 180 degrees 
         
        while(abs(new_psi_errorCTE(ii)) > pi) 
            new_psi_errorCTE(ii) = new_psi_errorCTE(ii) - sign(... 
                new_psi_errorCTE(ii))*2.0*pi; 
        end; 
         
        % **  Always Calculate this (What is This?) 
        new_Beta = new_v(ii)/new_U(ii); 
        %   Beta = 0.0; 
        new_cpsi_e = cos(new_psi_errorCTE(ii)+new_Beta); 
        new_spsi_e = sin(new_psi_errorCTE(ii)+new_Beta); 
         
        % Distance to the ith way point projected to the track line S(t)i 
        % - Eq (14) 
         
        new_s(ii) = [New_X_Way_Error(ii),New_Y_Way_Error(ii)]*[(... 
                New_X_Way_c(jj)-New_PrevX_Way_c(jj)),(New_Y_Way_c(jj)... 
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                -New_PrevY_Way_c(jj))]'; 
        %******************************************************************     
        % Calculates the Overall Distance Travelled, Distance Travelled, 
        % Time Used Overall, Time Remaining, Switches velocity from 0.5  
        % knots to 3.5 knots depending on Time Remaining and Distance  
        % Remaining while taking into account acceleration/deceleration.   
        % (28 Feb 02) 
         
        if ii == 1, 
            overall_distance_travelled(ii) = 0; 
            distance_travelled(ii) = 0; 
            time_used(ii) = 0; 
            time_remaining(ii) = new_time(ii); 
            real_time(ii) = 0; 
        elseif ii == 2, 
            overall_distance_travelled(ii) = New_SegLen(ii) - new_s(ii-1); 
            distance_travelled(ii) = overall_distance_travelled(ii); 
            %time_used(ii) = distance_travelled(ii)/(new_U(ii)/3.28); 
            time_remaining(ii) = time_remaining(ii-1)-dt;%time_used(ii); 
            real_time(ii) = new_time(ii) - time_remaining(ii); 
        else 
            overall_distance_travelled(ii) = New_SegLen(ii) - new_s(ii-1); 
            distance_travelled(ii) = overall_distance_travelled(ii) -... 
                overall_distance_travelled(ii-1); 
            time_used(ii) = distance_travelled(ii)/(new_U(ii)/3.28); 
            time_remaining(ii) = time_remaining(ii-1) - dt;%time_used(ii); 
            real_time(ii) = new_time(ii) - time_remaining(ii); 
        end 
         
        % s is distance to go projected to track line(goes from 0-100%L) 
        % - Eq (14) 
         
        new_s(ii) = new_s(ii)/New_SegLen(jj); 
         
        if (time_remaining(ii)<0.125), disp('mission out of time'),... 
                break,end; 
         
        % Determines what speed to set the vehicle at 
        %time_available(ii) = new_s(ii)/(new_U(ii)/3.28); 
        ucom(ii)=new_s(ii)/time_remaining(ii);  
         
        if ucom(ii) > 1.8 ; 
            ucom(ii) = 1.8 ;         % Max velocity is 3.5 Knots 
        end 
        if ucom(ii) < 0.2571 ; 
            ucom(ii) = 0.2571 ;      % Min velocity is 0.5 Knots 
        end 
         
         
         
        %****************************************************************** 
        %****************************************************************** 
        % New Control Law added for Longitudinal Equation of Motion -  
        % 14 May 2002 
         
        new_sigma(ii) = new_U(ii)-ucom(ii); 
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        new_phi(ii) = 0.1;tau=0.1;ncommax=22; 
         
        ncom2(ii) = (1.39*(accel(ii)*0-800*tanh(new_sigma(ii)/... 
            new_phi(ii))+67.74*(new_U(ii)*abs(new_U(ii))))); 
        ncom(ii)=sqrt(abs(ncom2(ii)))*sign(ncom2(ii)); 
         
        % Limits propeller speed to 22 rps 
         
        if (abs(ncom(ii))>ncommax),  
            ncom(ii)=ncommax*sign(ncom(ii)); 
        end; 
                   
        % always +ve in these simulations 
        % solve longitudinal dynamics 
         
        new_U(ii+1) = (0.004641*dt*(-10.5*(new_U(ii)*abs(new_U(ii)))+... 
            0.155*(ncom(ii)*abs(ncom(ii))) - 0.05*ncom(ii)*new_U(ii)))... 
            +new_U(ii); 
         
        New_SegLen(ii+1) = New_SegLen(ii); 
        new_time(ii+1) = new_time(ii); 
        accel(ii+1) = accel(ii); 
         
        %****************************************************************** 
        %****************************************************************** 
         
        % Ranges from 0-100% of SegLen 
         
        Ratio=(1.0-new_s(ii)/New_SegLen(jj))*100.0; 
         
        % Radial distance to go to next WP 
         
        new_ss(ii) = sqrt(New_X_Way_Error(ii)^2 + New_Y_Way_Error(ii)^2); 
         
        % dp is angle between line of sight and current track line 
        % - Eq (16) 
         
        new_dp(ii) = atan2( (New_Y_Way_c(jj)-New_PrevY_Way_c(jj)),(... 
            New_X_Way_c(jj)-New_PrevX_Way_c(jj)) )- atan2... 
            (New_Y_Way_Error(ii),New_X_Way_Error(ii) ); 
        if(new_dp(ii) > pi), 
            new_dp(ii) = new_dp(ii) - 2.0*pi; 
        end; 
         
        % Cross Track Error Definition - Eq (15) 
         
        new_cte(ii) = new_s(ii)*sin(new_dp(ii)); 
         
        % If the magnitude of the CTE Heading exceeds 40 degrees, a  
        % LOS Controller is used. 
         
        if( abs(new_psi_errorCTE(ii)) >= 40.0*pi/180.0 | new_s(ii) < 0.0 ), 
            new_LOS(ii) = 1; 
            new_psi_comLOS = atan2(New_Y_Way_Error(ii),... 
                New_X_Way_Error(ii)); 
            new_psi_errorLOS(ii) = new_psi_comLOS - new_psi_cont(ii); 
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            if(abs(new_psi_errorLOS(ii)) > pi), 
                new_psi_errorLOS(ii) = new_psi_errorLOS(ii) - 2.0*pi*... 
                    new_psi_errorLOS(ii)/abs(new_psi_errorLOS(ii)); 
            end; 
             
            % Eq (8) 
             
            new_Sigma_FlightHeading = 0.9499*(new_r_com - new_r(ii)) +... 
                0.1701*new_psi_errorLOS(ii); 
             
            % Eq (9) 
             
            new_dr(ii) = -1.5435*( 2.5394*new_r(ii)+ Eta_FlightHeading*... 
                tanh(new_Sigma_FlightHeading/Phi_FlightHeading));   
             
        else 
             
            % Use CTE Controller if CTE Heading is less than 40 degrees 
             
            new_LOS(ii) = 0;          
            if(new_cpsi_e ~= 0.0),                % Trap Div. by Zero ! 
                 
                % SMC Soln 
                 
                % Sliding Surface - Eq (20) 
                 
                new_Sigma(ii) = new_U(ii)*3.28*new_rRM(ii)*new_cpsi_e... 
                    + Lam1*new_U(ii)*3.28*new_spsi_e + 3.28*Lam2*... 
                    new_cte(ii); 
                 
                % Rudder Input - Eq (21) 
                 
                % new_dr(ii) = (1.0/(new_U(ii)*b*new_cpsi_e))*... 
                %     (-new_U(ii)*a*new_rRM(ii)*new_cpsi_e + new_U(ii)*... 
                %     new_rRM(ii)^2*new_spsi_e - Lam1*new_U(ii)*... 
                %     new_rRM(ii)*new_cpsi_e - Lam2*new_U(ii)*... 
                %     new_spsi_e -new_Eta_CTE*(new_Sigma(ii)/new_Phi_CTE)); 
                % changes because new_U is now in m/sec. 
                 
                new_dr(ii) = (1.0/(new_U(ii)*3.28*b*new_cpsi_e))*... 
                    (-new_U(ii)*3.28*a*new_rRM(ii)*new_cpsi_e +... 
                    new_U(ii)*3.28*new_rRM(ii)^2*new_spsi_e - ... 
                    Lam1*new_U(ii)*3.28*new_rRM(ii)*new_cpsi_e - ... 
                    Lam2*new_U(ii)*3.28*new_spsi_e -new_Eta_CTE*... 
                    (new_Sigma(ii)/new_Phi_CTE)); 
                                                 
            else 
                new_dr(ii) = new_dr(ii-1);       
            end; 
        end;                                 % End of CTE Controller 
         
        % Use LOS if near to loiter point 
        % if (loiter==1)& new_s(ii)<10;  new_dr(ii)=new_drlos(ii);end; 
         
        % Surface Phase Logic (Independent of LOS or CTE) 
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        if(SurfPhase == TRUE) 
            if(new_SURFACE_TIMER_ACTIVE == FALSE) 
                if(Ratio > 40.0) 
                    % Start a Timer 
                    new_SURFACE_TIMER_ACTIVE = TRUE; 
                    new_Depth_com(ii) = 0.0; 
                    new_SurfaceWait = new_SurfaceTime(1) + tt(ii); 
                    new_SurfaceWait 
                end; 
            end; 
        end; 
        if(new_SURFACE_TIMER_ACTIVE == TRUE) 
            if(tt(ii) >= new_SurfaceWait) 
                new_SURFACE_TIMER_ACTIVE = FALSE; 
                new_Depth_com(ii) = new_WayPointVertDist_com(1); 
                new_SurfPhase(1) = 0; 
            else 
                new_Depth_com(ii) = 0.0; 
            end; 
        end; 
        if(abs(new_dr(ii)) > 0.4) 
            new_dr(ii) = 0.4*sign(new_dr(ii)); 
        end; 
         
        % Model drl is the actual lagged rudder, dr is the rudder command. 
        % taudr = 0.255; 
         
        %  drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr; 
        % if(abs(drl(i)) > 0.4) 
        %    drl(i) = 0.4*sign(drl(i)); 
        % end; 
        new_x_dot(:,ii+1) = [ A(1,1)*new_v(ii) + A(1,2)*new_r(ii) + B(1)*... 
                new_dr(ii); A(2,1)*new_v(ii) + A(2,2)*new_r(ii) + B(2)*... 
                new_dr(ii); new_r(ii)]; 
        new_x(:,ii+1) = new_x(:,ii)+dt*new_x_dot(:,ii);            
        new_v(ii+1)   = new_x(1,ii+1)/12; 
        new_r(ii+1)   = new_x(2,ii+1); 
        new_psi(ii+1) = new_x(3,ii+1); 
        new_rRM(ii+1) = new_r(ii+1); 
         
        % Added 
        % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i)); 
        % psi(i+1) = psi(i) + dt*rRM(i); 
         
        % Throw in some Waves 
        % Uc(i) = -0.5*sin(2*pi*t(i)/5); 
        % Vc(i) =  0.5*sin(2*pi*t(i)/5); 
         
        % Model using system ID results from Bay tests 
         
        % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i)); 
        % psi(i+1) = psi(i) + dt*rRM(i); 
        % side slip added proprtional to turn rate from AZORES data V in 
        % ft/sec 
        % v(i+1) = 1.0*rRM(i+1)*3.28; 
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        Uc = 0.0;  
        Vc = 0.0; 
         
        % Kinematics note new_U is in meters /sec, new_v is in ft/sec 
        % hold over from long time ago 
         
        New_X(ii+1) = New_X(ii) + (Uc + (new_U(ii))*cos(new_psi(ii)) -... 
            new_v(ii)/3.28*sin(new_psi(ii)) )*dt; 
        New_Y(ii+1) = New_Y(ii) + (Vc + (new_U(ii))*sin(new_psi(ii))... 
            + new_v(ii)/3.28*cos(new_psi(ii)) )*dt; 
         
        % Check to See if we are Within the Watch_Radius (set to 1  
        % meter here) 
         
        if(sqrt(New_X_Way_Error(ii)^2.0 + New_Y_Way_Error(ii)^2.0)... 
                <= 1 | new_s(ii) < 0.0),               
             
            % Next Line ends mission if within Watch Radius. 
             
            disp(sprintf('Rendezvous Point Reached')); break;    
            if(jj==No_tracks),               
                PLOT_PART = 2; 
                disp(sprintf('PLOT_PART = 2')); 
                break; 
            end; 
            New_PrevX_Way_c(jj+1) = New_X_Way_c(jj); 
            New_PrevY_Way_c(jj+1) = New_Y_Way_c(jj); 
        end 
    end  %end of ii loop 
end  % if j=No_Tracks 
%************************************************************************** 
 
% Plotting 
 
if PLOT_PART == 1, 
     
    % Plot of Time vs Rudder Angle & Vehicle Heading 
     
    figure(1); clf 
    orient tall 
    plot(t([1:i+1]),psi*180/pi); 
    hold; 
    plot(t([1:i+1]),dr*180/pi,'r:');grid; 
    title('Time vs Rudder Angle and Vehicle Heading'); 
    xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)'); 
    legend('Vehicle Heading', 'Rudder Angle'); 
    print -tiff -depsc figure1_wp5 
    hold;zoom on; 
     
    % Plot of Time vs CTE, Distance to Go to Projected Track, Radial 
    % Distance to Next Waypoint 
     
    figure(2); clf 
    orient tall 
    plot(t([1:i+1]),cte); 
    hold; 
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    plot(t([1:i+1]),s,'r:'); 
    plot(t([1:i+1]),ss,'g--');grid; 
    title('Time vs Cross Track Error') 
    xlabel('Time (sec)');ylabel('Distance (meters)'); 
    legend('Cross Track Error', 'Distance to Go Projected to Track', ... 
        'Radial Distance to Go to Next Way Point'); 
    print -tiff -depsc figure2_wp5 
    hold;zoom on; 
     
    %*************** 
    figure(3); clf 
    orient tall 
    plot(t([1:i+1]),U); grid; 
    title('Time vs Forward Speed') 
    xlabel('Time (sec)'); ylabel('Forward Speed (m/s)'); 
    %*************** 
     
elseif PLOT_PART == 0, 
     
    % Plot of Time vs Rudder Angle & Vehicle Heading for Rendezvous Mission 
     
    figure(4); clf 
    orient tall 
    plot(t([1:i+1]),psi*180/pi, 'g'); 
    hold; 
    plot(real_time([1:ii])+30,new_psi([1:ii])*180/pi, 'g:'); 
    plot(t([1:i]),dr*180/pi,'r'); 
    plot(real_time([1:ii-1])+30,new_dr([1:ii-1])*180/pi, 'r:'); 
    title('Time vs Rudder Angle and Vehicle Heading'); 
    xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)'); 
    legend('Vehicle Heading Before Mission Abort',... 
        'Vehicle Heading After Mission Abort',...    
        'Rudder Angle Before Mission Abort',... 
        'Rudder Angle After Mission Abort'); 
    print -tiff -depsc figure4_wp5 
    hold;grid; 
     
    % Plot of Time vs CTE, Distance to Go to Projected Track, Radial 
    % Distance to Next Waypoint for Rendezvous Mission 
     
    figure(5); clf 
    orient tall 
    plot(t([1:i]), cte, 'g'); 
    hold; 
    plot(real_time([1:ii-1])+30, new_cte([1:ii-1]), 'g:'); 
    plot(t([1:i]), s,'r'); 
    plot(real_time([1:ii-1])+30, new_s([1:ii-1]), 'r:'); 
    plot(t([1:i-1]), ss([1:i-1]),'b');grid; 
    plot(real_time([1:ii-1])+30, new_ss([1:ii-1]), 'b:'); 
    title('Time vs Cross Track Error') 
    xlabel('Time (sec)'); ylabel('Distance (meters)'); 
    legend('Cross Track Error Before Abort',... 
        'Cross Track Error After Abort',... 
        'Distance to Go Projected to Track Before Abort', ... 
        'Distance to Go Projected to Track After Abort',... 
        'Radial Distance to Go to Next Way Point Before Abort',... 
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        'Radial Distance to Go to Next Way Point After Abort');    
    print -tiff -depsc figure5_wp5 
    hold;zoom on; 
    %*************** 
    figure(6); clf 
    orient tall 
%     subplot(1,2,1) % In order to produce Figure 17 in thesis 
    plot(t([1:i+1]),U/3.28, 'b*'); 
    hold; 
    plot(real_time([1:ii-1])+30,new_U([1:ii-1]),'r.',... 
        real_time([1:ii-1])+30,ucom([1:ii-1]),'m'); grid; 
    %    AXIS([0 30+new_time(1) 0 2]); 
    title('Time vs Forward Speed') 
    xlabel('Time (sec)'); ylabel('Forward Speed (m/s)'); 
    legend('Original Speed', 'Rendezvous Speed', 'Command Speed'); 
    hold; 
%  In order to produce Figure 17 in thesis 
%     subplot(1,2,2) 
%     plot(real_time(1:ii)+30, ncom(1:ii),'b.'); grid 
%     title('Propeller Speed') 
%     xlabel('Time (sec)'); ylabel('Propeller Speed (rps)') 
%     axis([30 100 12 22]) 
    print -tiff -depsc figure6_wp5 
     
    % 3-D Plot 
     
    figure(7); clf 
    orient tall 
    plot3(Y, X, t([1:i+1]), 'b'); grid; 
    title('Time Space Plot') 
    xlabel('Y (meters)'); 
    ylabel('X (meters)'); 
    zlabel('Time (seconds)'); 
    hold; 
    plot3(New_Y([1:ii]), New_X([1:ii]), real_time([1:ii])+30, 'rx'); 
    plot3(New_Y_Way_c, New_X_Way_c, new_time(ii)+30, 'gd'); 
    legend('Original Track', 'New Track', 'Rendezvous') 
    print -tiff -depsc figure7_wp5 
    hold; 
     
    %    figure(8); clf 
    %    orient tall 
    %    plot(t([1:i+1]),X, 'r'); 
    %    hold; 
    %    plot(real_time([1:ii])+30, New_X([1:ii]),'r:'); 
    %    plot(t([1:i+1]), Y, 'g'); 
    %    plot(real_time([1:ii])+30, New_Y([1:ii]),'g:'); grid; 
    %    title('Time vs Postition'); 
    %    xlabel('Time (sec)'); ylabel('Position (meters)'); 
    %    legend('Original X', 'Rendezvous X', 'Original Y',... 
    %       'Rendezvous Y',2); 
    %    hold; 
     
    %*************** 
end; 
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% Plot of Actual Track and Planned Track 
% Modified on 05 Feb 2002 - To include waypoint2.m modifications. 
 
if PLOT_PART == 1, 
    figure(9); clf 
    orient tall 
    plot(Y,X,'b--');grid;                              % Actual Track 
    title('ARIES Track - Actual and Planned'); 
    xlabel('Y (meters)');ylabel('X (meters)'); 
    hold; 
     
    % Planned Track 
    plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r'); 
    plot(Y_REMUS, X_REMUS, 'g'); 
    axis([-100 220 -120 60]); 
    for ik=2:No_tracks, 
        plot([Y_Way_c(ik) Y_Way_c(ik-1)],[X_Way_c(ik)... 
                X_Way_c(ik-1)],'r'); 
    end; 
    legend('Actual Track - ARIES', 'Planned Track - ARIES',... 
        'REMUS Path',4); 
    print -tiff -depsc figure9_wp5 
    hold; zoom on 
     
elseif PLOT_PART == 0 | PLOT_PART == 2, 
     
    % Plot of Planned Track, Track after Mission Change, Rendezvous 
    % Point and Initial Track 
     
    figure(10); clf 
    orient tall 
    plot(Y,X,'b--');grid; 
    title('ARIES Track - Actual and Planned'); 
    xlabel('Y (meters)');ylabel('X (meters)'); 
    hold; 
    plot(New_Y, New_X,'g-.'); 
    plot(New_Y_Way_c, New_X_Way_c,'gd'); 
    plot(Y_REMUS, X_REMUS, 'm'); 
    plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r'); 
    for ik=2:No_tracks, 
        plot([Y_Way_c(ik) Y_Way_c(ik-1)],[X_Way_c(ik)... 
                X_Way_c(ik-1)],'r'); 
    end; 
    legend('Initial Track - ARIES',... 
        'Track After Modem Command - ARIES','Rendezvous Point',... 
        'REMUS Track','Planned Track - ARIES',4); 
    axis([-100 220 -120 60]); 
     
    %       AXIS([-100 250 -80 60]) 
    print -tiff -depsc figure10_wp5 
    hold; zoom on 
end 
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